An Interesting Complex Exponential | Problem 488

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ก.พ. 2025

ความคิดเห็น •

  • @اسماعیلخسروی-خ6ظ
    @اسماعیلخسروی-خ6ظ วันที่ผ่านมา

    ❤❤❤❤

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs วันที่ผ่านมา +2

    (1+i)^Sqrt[2]=Sqrt[2]^Sqrt[2]Cos[(π/4)Sqrt[2]]+Sqrt[2]^Sqrt[2]Sin[(π/4)Sqrt[2]]

  • @scottleung9587
    @scottleung9587 วันที่ผ่านมา

    Nice!

    • @aplusbi
      @aplusbi  วันที่ผ่านมา +1

      I’m glad you like it! 😊

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs วันที่ผ่านมา +1

    (1+i)^Sqrt[2]=Sqrt[2]^Sqrt[2]Cos[0.25Sqrt[2]π]+Sqrt[2]^Sqrt[2]Sin[0.25Sqrt[2]π]i Input
    (1 + i)^sqrt(2) = sqrt(2)^sqrt(2) cos(0.25 sqrt(2) π) + sqrt(2)^sqrt(2) sin(0.25 sqrt(2) π) i
    Result
    True It’s in my head

  • @MichaelJamesActually
    @MichaelJamesActually วันที่ผ่านมา +1

    You solved (1+I)^2. Why not just square root that to get your answer? Or write (1+I) in polar form then raise to sqrt 2

    • @aplusbi
      @aplusbi  วันที่ผ่านมา

      Square root of (1+i)^2 is +-(1+i)

    • @MichaelJamesActually
      @MichaelJamesActually 23 ชั่วโมงที่ผ่านมา

      @ haha, oops, I wrote that late at night.

    • @0over0
      @0over0 9 ชั่วโมงที่ผ่านมา

      Yes, polar form is simpler- ( sqrt2 * e^i*PI/4 ) ^ sqrt2 = sqrt2^sqrt2 * e^i*sqrt2*PI/4.

  • @TheMathManProfundities
    @TheMathManProfundities วันที่ผ่านมา

    Why only take the principal log. This expression will actually have infinitely many distinct representations. 1+i is not a positive number so the convention of treating an exponential as a function does not apply here.

  • @NathanR_sfba
    @NathanR_sfba วันที่ผ่านมา

    So here's a question I've been pondering without success for the last few days: When does sin z = sinh z?
    Obviously z=0 is a solution, but are there other complex solutions? Can we calculate the other solutions? (Or prove that there are none?)
    I think I've figured out how to solve cos z = cosh z (and it's a rather nice answer) but I can't figure out how to do it for sin and sinh

  • @Pascal-cy9sc
    @Pascal-cy9sc วันที่ผ่านมา

    e^((√2/2)In2)=2^(√2/2 ) ともう少し簡単な式に出来ます😅

  • @black_eagle
    @black_eagle 6 นาทีที่ผ่านมา

    Why not apply Euler's formula first and exponentiate to get the same result without any logarithms?
    (1 +i)^sqrt(2) = (sqrt(2) * e^(i*pi/4))^sqrt(2) = sqrt(2)^sqrt(2) * e^(i*pi*sqrt(2)/4).

  • @ImKinoNichtSabbeln
    @ImKinoNichtSabbeln วันที่ผ่านมา

    Why do you never truncate sqrt(2)/2 = 1/sqrt(2) ?
    The un-shortened form makes it more fuzzy, and less elegant.
    Also moe elegant: 4π/sqrt(2) = 2 sqrt(2) π

    • @TheMathManProfundities
      @TheMathManProfundities วันที่ผ่านมา

      It's an option but it's generally considered to be good practice to keep denominators as simple as possible as they are generally easier to work with in this form. I would normally prefer ½√2 over 1/√2.

    • @ImKinoNichtSabbeln
      @ImKinoNichtSabbeln 19 ชั่วโมงที่ผ่านมา

      @TheMathManProfundities With all respect, I dispute the claimed generality of keeping denominators simple at the cost of a more bloated complete fraction.
      E.g., where I studied keeping sqrt(2)/2 in an end result would had cost me a few points.
      Apart from that it's just the visual familarity of 1/sqrt(2). To me, it's just a simple old friend.
      Taking your argument into account, and knowing that sqrt(2)/2 = 1/sqrt(2) = sin(π/4) = cos(π/4), you should opt for the trigonometric expressions because they provide the simplest denominator.

  • @acopiae
    @acopiae 3 ชั่วโมงที่ผ่านมา

    base / bass joke 👍

  • @Don-Ensley
    @Don-Ensley 14 ชั่วโมงที่ผ่านมา

    problem
    ( 1 + i ) ᵛ²̅ = ?
    Call this complex number z.
    The polar form of the base is
    1 + i = √2 e^(i π (1/4+2k)),
    k ∈ ℤ
    This is seen in the Argand plane with 1 unit along the real axis and 1 unit along the imaginary axis for a modulus of √2 and general angle θ of π(1/4 +2k), k ∈ ℤ.
    This just goes to show that there is no better oiler than Euler when it comes to rotations in the complex plane!
    Replacing from the above discussion,
    z = (√2 ᵛ²̅) e^[ i π √2(1/4 +2k) ]
    , where √2 exponent has been distributed.
    Now take natural logarithms on each side.
    ln z = √2 ln (√2) + i π √2(1/4 +2k)
    ln z = √2 ln (2)/2 + i π √2(1/4 +2k)
    Take e to each side.
    z =
    2ᵛ²̅ᐟ² e^(i π√2[1/4+2k])
    Euler's formula renders this as
    = 2ᵛ²̅ᐟ² [ cos π√2(1/4+2k) +
    i sin π√2(1/4+2 k) ]
    k ∈ ℤ
    Principal value is at k = 0.
    answer
    ( 1 + i ) ᵛ²̅ =
    = 2ᵛ²̅ᐟ² [ cos π√2(1/4+2k) +
    i sin π√2(1/4+2 k) ]
    k ∈ ℤ