Adversarial Diffusion Distillation

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 พ.ย. 2024
  • Paper Link: arxiv.org/abs/...
    Stability Link: stability.ai/research/adversarial-diffusion-distillation
    My Notes: drive.google.c...

ความคิดเห็น • 5

  • @puppylovingpacifist9623
    @puppylovingpacifist9623 9 หลายเดือนก่อน +1

    Gabriel is the GOAT

  • @julienblanchon6082
    @julienblanchon6082 11 หลายเดือนก่อน

    Wow thanks love your channel

  • @DavideTaricco
    @DavideTaricco 11 หลายเดือนก่อน +1

    Hi, thanks for the video. Just one question, around minute 14:00 you said that the student’s timesteps are between 1and 4, but in the paper the authors state that the final timestep (tau_n) for the student must be 1000 (so equal to the teacher one). So what do you think? The student’s timestep should be something like {1,2,3,1000} or what?

    • @gabrielmongaras
      @gabrielmongaras  11 หลายเดือนก่อน +1

      I think they do that so they can use the same scheduler for both models to keep a consistent SNR. Timestep 1000 represents 100% noise which is where you always start from. I'm guessing they use uniform steps after that to get a wide rate of SNR values: {1, 250, 500, 1000}

  • @crittervancritter6745
    @crittervancritter6745 11 หลายเดือนก่อน

    would you be able to do a video on the mamba ssm paper? your videos help me understand much better