how to setup partial fractions (all cases)

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 พ.ย. 2024

ความคิดเห็น • 249

  • @bprpcalculusbasics
    @bprpcalculusbasics  ปีที่แล้ว +35

    How to solve the constants: th-cam.com/video/WrGXIjXRSys/w-d-xo.html

  • @fun-damentals6354
    @fun-damentals6354 3 หลายเดือนก่อน +60

    just learnt this in school, but the teacher never bothered to actually explain. god bless ya, man

  • @waleedd857
    @waleedd857 8 หลายเดือนก่อน +252

    this, is HANDS DOWN, the BEST explanation on this entire website, maybe even in this entire universe

  • @lyndonmensah-cooley869
    @lyndonmensah-cooley869 ปีที่แล้ว +96

    the most captivating part is the way he switches between the 2 markers with one hand

  • @willbishop1355
    @willbishop1355 2 ปีที่แล้ว +139

    This is great. I've done a lot of calculus and watched a lot of math videos, but don't know that I'd ever had it explained this way before.

    • @bprpcalculusbasics
      @bprpcalculusbasics  2 ปีที่แล้ว +9

      Thank you.

    • @leif1075
      @leif1075 2 ปีที่แล้ว

      @@bprpcalculusbasics Donyou think thisbis too unintuitive though and needlessly complicated? Hope you can respond when you can. Thanks for sharing.

  • @saltygritz657
    @saltygritz657 2 หลายเดือนก่อน +7

    The ending was the cherry on top

  • @martinezfalcon5217
    @martinezfalcon5217 2 ปีที่แล้ว +49

    Finally this question is answered in an intuitive way:)) I’ve been wondering this for ages

  • @farhansadik5423
    @farhansadik5423 11 หลายเดือนก่อน +26

    You actually don't know how much I appreciate this video, i've had this question looming over my head for like 3 years! This was actually astonishing to see! Thanks!

    • @rodrigosilva893
      @rodrigosilva893 10 หลายเดือนก่อน +3

      Same to me, I just love this guy 😭

    • @farhansadik5423
      @farhansadik5423 10 หลายเดือนก่อน

      ​@@rodrigosilva893you made me watch this again, thanks 🫂

    • @bprpcalculusbasics
      @bprpcalculusbasics  6 หลายเดือนก่อน +1

      Glad to help! Thank you!!!

  • @luisaleman9512
    @luisaleman9512 2 ปีที่แล้ว +19

    This is the best explanation I've seen for this. Great job.

  • @Williamsantosh.22
    @Williamsantosh.22 4 หลายเดือนก่อน +3

    Insane mind muscle coordination they way you just swap the blue and red pens absolutely insane... And the explanation absolutely crystal clear

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 2 ปีที่แล้ว +27

    The best way to do partial fraction, is not to do partial fraction! ... I wish, But it seems impossible!
    I'm always struggling with Partial fractions!
    Thank you Teacher

  • @kingbeauregard
    @kingbeauregard 2 ปีที่แล้ว +57

    For me, the math is more intuitive this way, but it gets to the same place. Looking just at the (x + 2)^2 part, we could express its partial fraction as (Bx + C) / (x + 2)^2. Then we could algebrize that numerator into "(B(x + 2) + (C - 2B))", and since we're dealing with as-yet undetermined coefficients, we could replace "(C - 2B)" with "D". So that leaves us with a numerator of "B(x + 2) + D", and when we divide by "(x + 2)^2", we're left with "B/(x + 2) + D/(x + 2)^2".

    • @dungdul4151
      @dungdul4151 2 ปีที่แล้ว +2

      That's so much simpler! The substitution thing he did in the video is too unintuitive and overcomplicates the problem in my opinion.

    • @leif1075
      @leif1075 2 ปีที่แล้ว +2

      But WAIT can't you do the partial.fractuon decomposition WITHOUT the B term..I think you can so why doesn't he show this??

    • @carultch
      @carultch ปีที่แล้ว +1

      ​@@leif1075 You might have one that coincidentally turns out to be zero, but in general, if you are working with a quadratic, you have to put a linear term on top of it, because fractions using a quadratic denominator have two degrees of freedom.
      You can either set it up as (B*x + C)/(x + 2)^2, or B/(x + 2)^2 + C/(x + 2). Either way, you'll get a partial fraction decomposition that is valid. Usually, the form of B/(x + 2)^2 + C/(x + 2) is preferable, for an application where you'd use this concept.
      I recommend putting terms you can get by Heaviside coverup first. So if I were given (2*x + 1)/((x + 1)*(x + 2)^2), I'd assign A to be the coefficient over (x + 1), and B to be the coefficient over (x + 2)^2. Both of these, can be found with Heaviside coverup. You get A = -1, and B = 3.
      There is a shortcut that can work for getting C.
      (2*x + 1)/((x + 1)*(x + 2)^2) = -1/(x + 1) + 3/(x + 2)^2 + C/(x + 2)
      Multiply through by just one instance of (x + 2):
      (2*x + 1)/((x + 1)*(x + 2)) = -(x + 2)/(x + 1) - 3/(x + 2) + C
      Let x go to infinity by taking the limit. Terms with a higher x-degree in the denominator than the numerator become zero, terms with equal degrees of x in both become a finite number.
      0 = -1 - 0 + C
      And we can directly see that C = +1.

    • @leif1075
      @leif1075 ปีที่แล้ว

      @@carultch indont known what heaviside cover up is nut also what you say doesn't make sense..you already have one linear term.and one quadratic term so you still.dont need the B term..see what I mean??

    • @carultch
      @carultch ปีที่แล้ว +2

      @@leif1075 Heaviside cover-up is a shortcut for partial fractions. The idea is that you can more directly find the coefficient over the linear terms, by plugging in the input that makes that particular factor equal zero. Then, cover up that term in the original fraction, and evaluate the rest at the same input value.
      If you try only having one constant coefficient over either a quadratic denominator, or a repeated linear denominator without the second term, you'll end up with an over-constrained system of equations, that is either redundant or contradictory. Try it for:
      (2*x + 1)/((x + 1)*(x + 2)^2)
      Assume it is equal to:
      A/(x + 1) + B/(x + 2)^2
      Cross-multiply:
      (2*x + 1) = A*(x + 2)^2 + B*(x + 1)
      Expand:
      2*x + 1 = A*x^2 + 4*A*x + 4*A + B*x + B
      This constructs the equations:
      A = 0
      4*A + B = 2
      B = 1
      And you'll see a contradiction, that B needs to both equal 1 and 2, which it can't do. This is why we need a third term, of C/(x + 2), so we have a third unknown for a 3-equation system.

  • @JohnSmith-pv1jq
    @JohnSmith-pv1jq 2 ปีที่แล้ว +14

    I wish my university math teachers were like this guy!

  • @okechukwuciano4997
    @okechukwuciano4997 หลายเดือนก่อน

    This dude is the Wizard, the Gandalf of Mathematics. Thanks for making math easy and fun to learn. I can solve differential equations now, all thanks to you.

  • @evanbarkman5786
    @evanbarkman5786 2 ปีที่แล้ว +156

    I disagree that that's the reason, it's definitely a good way to show it, but the reason is because of what partial fractions are, essentially they are undoing finding the common denominator, and when you have a repeated term, you could have had every power of the repeated term up to the power of the term and the denominator would have looked the same, so you assume they could all be there, unless you show a numerator is zero. My biggest beef with partial fractions is when I first learned how to do them I didn't learn why I was doing them, just that it was how you solved a certain type of integral, and therefore I didn't really learn how to do it properly, now that I understand that you're just reversing getting a common denominator it all makes sense, and I could probably figure it out from just the idea if I really wanted to, rather than having to remember the process (although it would be a little faster if I could remember it).

    • @bprpcalculusbasics
      @bprpcalculusbasics  2 ปีที่แล้ว +84

      "essentially they are undoing finding the common denominator, and when you have a repeated term, you could have had every power of the repeated term up to the power of the term and the denominator would have looked the same, so you assume they could all be there, unless you show a numerator is zero." okay but why is this the case?

    • @dogfrog3893
      @dogfrog3893 2 ปีที่แล้ว +32

      @@bprpcalculusbasics they’ve been real quiet after this.😂

    • @dVPulse
      @dVPulse 2 ปีที่แล้ว +6

      @@bprpcalculusbasics I understood all of the video except the rule you used; the degree on the top must be 1 less than the degree on the bottom. Why is this the case?

    • @chessematics
      @chessematics 2 ปีที่แล้ว +6

      @@dVPulse that requires some proof which can't be written down in the comments without making its too tiresome to read. But yeah, there IS a proof and I'll post a link whenever i find it.

    • @nvx8408
      @nvx8408 ปีที่แล้ว

      @@chessematics where?pls post it

  • @stemwithme594
    @stemwithme594 ปีที่แล้ว +10

    This was so helpful, listing all the possibilities and literally answering all the questions just as I was asking myself!

  • @MonzurulHoque3141
    @MonzurulHoque3141 2 ปีที่แล้ว +3

    One of Greatest Mathematics Teacher🤗😊

  • @Kevin.nworie
    @Kevin.nworie 6 หลายเดือนก่อน +9

    I needed a quick reminder before exams thanks

  • @qipick8889
    @qipick8889 19 วันที่ผ่านมา +1

    I subscribed you because you save my life

  • @AbdulWahabOlowoporoku
    @AbdulWahabOlowoporoku 6 วันที่ผ่านมา

    You are very good teacher u break it down just as some teachers can not do

  • @vaishnavimajumdar561
    @vaishnavimajumdar561 ปีที่แล้ว +2

    this was the best someone have ever explained me. It was to the point and not too overwhelming. By the way, that poke-ball mic is on point!!

  • @ArtStarproductions
    @ArtStarproductions 9 หลายเดือนก่อน +2

    That was awesome. Thank you! Helping my college teen!

  • @argghsgahghrw
    @argghsgahghrw 8 หลายเดือนก่อน

    you explain math so comprehensively thank you

  • @oluwatobiakinola25
    @oluwatobiakinola25 4 หลายเดือนก่อน +3

    just exactly what i was looking for.

  • @krystalh3384
    @krystalh3384 2 หลายเดือนก่อน +1

    Thank you so much. This was extremely helpful as I was very confused about the setup of integral functions like this.

  • @JinkunYan
    @JinkunYan 8 หลายเดือนก่อน +1

    it is a really good way to understand it. You forget what we need to prove at 8:40, HHHHA~!
    But I got it, thank you so much.

  • @garv_g
    @garv_g 2 ปีที่แล้ว +5

    Another nice video...❤ I revise My concepts watching your videos...

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 2 ปีที่แล้ว +3

    Thank you so much dear Teacher 💖

  • @satyendranooka3437
    @satyendranooka3437 8 หลายเดือนก่อน +6

    exactly the video I wanted ! 😂 #NCERT,Class 12

    • @user-cc4lj3ge5u
      @user-cc4lj3ge5u 8 หลายเดือนก่อน

      The easiest maths book you could ever do 😂

    • @nandagopans8452
      @nandagopans8452 3 หลายเดือนก่อน

      @@user-cc4lj3ge5u easy but important for any beginner. nobody jumps to the 10 floor initially.. One needs to progress slowly and steadily, NCERT is good to start with anyway

  • @blug2949
    @blug2949 6 หลายเดือนก่อน

    This helped me so much becuse of this i will be able to pass my precalc class helping me raise it by over TWO percent!!! My parents are finally satisfied.

  • @averyelf3557
    @averyelf3557 3 หลายเดือนก่อน +2

    You're a Savior T_T
    I'm doing Electrical& Electronics, pray for me

  • @AlfonsoNeilJimenezCasallas
    @AlfonsoNeilJimenezCasallas 2 ปีที่แล้ว +3

    very useful to solve some kind of integrals and differential equations

  • @NjidekaEnwereuzo
    @NjidekaEnwereuzo 23 วันที่ผ่านมา

    He is a genius and quit funny 😂😂.
    I really enjoyed the class, thank you ☺️

  • @yazlinmohsin2727
    @yazlinmohsin2727 2 หลายเดือนก่อน

    Gosh I FINALLY understood this after a year 😭😭 THANKS MANN

  • @KieranConnolly-dq1cc
    @KieranConnolly-dq1cc หลายเดือนก่อน

    Great explanation! Just saved me big time thank you.

  • @eftsa5323
    @eftsa5323 7 หลายเดือนก่อน +1

    thank you very much my friend. Greeting from Greece!

  • @curtcarman
    @curtcarman 9 หลายเดือนก่อน +1

    Great video. I was most impressed by the slight of hand with the dry erase markers though

  • @signalsensei
    @signalsensei 3 หลายเดือนก่อน +3

    useful for inverse laplace transform !

  • @BitsNBytes_
    @BitsNBytes_ 8 หลายเดือนก่อน +1

    This is incredibly helpful, thanks a lot man!

  • @saharshchoudhary6874
    @saharshchoudhary6874 3 วันที่ผ่านมา

    beautifully explained good sir

  • @MadhuMalathi12th-C
    @MadhuMalathi12th-C หลายเดือนก่อน +1

    1.618 The golden ratio, also known as the golden number, golden proportion, or divine proportion, is the ratio between two numbers that is approximately equal to 1.618. It is represented by the Greek letter phi (Φ)

  • @starzfn9109
    @starzfn9109 2 ปีที่แล้ว +27

    I have a problem for you.What are the angles at the intersection point of the functions (1/3)^x and 2^x.I found this problem really fun to do 😄

    • @NoNameAtAll2
      @NoNameAtAll2 2 ปีที่แล้ว +6

      arctg(ln(3))+arctg(ln(2))?
      does it simplify somehow or smth?

    • @田村博志-z8y
      @田村博志-z8y 2 ปีที่แล้ว

      @@NoNameAtAll2
      Setting a := arctan( ln 2 ), b := arctan( ln 3 ) we have
      tan a = ln 2,
      tan b = ln 3,
      tan( a + b ) = ( tan a + tan b )/( 1 - ( tan a )( tan b ) )
      = ( ln 2 + ln 3 )/( 1 - ( ln 2 )( ln 3 ) )
      = ( ln 6 )/( 1 - ( ln 2 )( ln 3 ) ).
      The calculator shows that
      ( ln 2 )( ln 3 ) = 0.7615000…
      So tan( a + b ) > 0. Noting that
      0 < a, b < π/2,
      0 < a + b < π,
      we have
      a + b = arctan( ( ln 6 )/( 1 - ( ln 2 )( ln 3 ) ) ).
      Consequently, we obtain
      arctan( ln 2 ) + arctan( ln 3 ) = arctan( ( ln 6 )/( 1 - ( ln 2 )( ln 3 ) ) ).

    • @田村博志-z8y
      @田村博志-z8y 2 ปีที่แล้ว

      In general, for every x, y > 0 we have
      ( i ) 0 < xy < 1 ⇒ arctan x + arctan y = arctan( ( x + y )/( 1 - xy ) )
      ( ii ) xy = 1 ⇒ arctan x + arctan y = π/2
      ( iii ) 1 < xy ⇒ arctan x + arctan y = π - arctan( ( x + y )/( xy - 1 ) )

    • @NoNameAtAll2
      @NoNameAtAll2 2 ปีที่แล้ว +3

      @@田村博志-z8y idk man
      having _fraction_ with logarithms doesn't seem simpler than 2 separate ones
      and arctg layer is still there, so it's cubersome either way

    • @田村博志-z8y
      @田村博志-z8y 2 ปีที่แล้ว

      @@NoNameAtAll2
      Oh, sorry. I don't know what expression is better for some calculation.

  • @marvinlwando9420
    @marvinlwando9420 ปีที่แล้ว +1

    U ARE A LIFE SAVER!!! THANKS

  • @Bruh-bk6yo
    @Bruh-bk6yo ปีที่แล้ว +1

    Good thing this answer got revealed during our algebra lecture when we were proving that every polynomial fraction can be expressed as the sum of the polynomial simple fractions.

  • @forthrightgambitia1032
    @forthrightgambitia1032 2 หลายเดือนก่อน +1

    Another way of seeing it is,that Bx + C/(x+2)^2 = Bx + 2B/(x+2)^2 + C - 2B/(x+2)^2 = B(x + 2/(x+2)^2 + C - 2B/(x+2)^2 = B/(x+2) + D/(x+2)^2 where D = C -2B, i.e is a just a constant.
    It is also worth remembering that the conditions here are entirely because the problem is ultimately a system of equations and so the variables need to equal the number of equations.

    • @Glowdits
      @Glowdits 2 หลายเดือนก่อน +1

      you randomly worked hard to explain someone but i didnt understand wht u wrote

  • @kepler4192
    @kepler4192 2 ปีที่แล้ว +7

    blackpenredpen fans for the win!
    also a question, if you include complex numbers, would partial fractions be any different other than the irreducible being reducible?

    • @carultch
      @carultch ปีที่แล้ว

      Yes indeed. If you include complex numbers, then all polynomial denominators up to the quartic, would technically be reducible. Quintics and beyond, have no closed-form solution for the roots, in elementary functions.
      It usually won't help you very much to do this. It's a lot easier to set up the algebraic system to solve for unknown coefficients, than to detour to the complex numbers. Even though Heaviside coverup works for linear factors of complex roots as well.

  • @田村博志-z8y
    @田村博志-z8y 2 ปีที่แล้ว +2

    Hi, I comment here for the first time.
    By Euclidean algorithm we have
    ( x + 2 )^2 = ( x + 3 )( x + 1 ) + 1,
    1 = ( x + 2 )^2 - ( x + 3 )( x + 1 ),
    1/( ( x + 1 )( x + 2 )^2 ) = 1/( x + 1 ) - ( x + 3 )/( x + 2 )^2.
    We also have
    ( x + 3 )/( x + 2 )^2 = ( x + 2 + 1 )/( x + 2 )^2
    = 1/( x + 2 ) + 1/( x + 2 )^2.
    Hence we obtain
    1/( ( x + 1 )( x + 2 )^2 ) = 1/( x + 1 ) - 1/( x + 2 ) - 1/( x + 2 )^2.

    • @田村博志-z8y
      @田村博志-z8y 2 ปีที่แล้ว +1

      By the similar way we have
      1 = ( x + 2 )^2 - ( x + 3 )( x + 1 ),
      2x + 1 = ( 2x + 1 )( x + 2 )^2 - ( 2x + 1 )( x + 3 )( x + 1 )
      = ( 2( x + 1 ) - 1 )( x + 2 )^2 - ( 2( x + 2 )^2 - ( x + 5 ) )( x + 1 )
      = ( x + 5 )( x + 1 ) - ( x + 2 )^2,
      ( 2x + 1 )/( ( x + 1 )( x + 2 )^2 ) = ( x + 5 )/( x + 2 )^2 - 1/( x + 1 ).
      And we also have
      ( x + 5 )/( x + 2 )^2 = 1/( x + 2 ) + 3/( x + 2 )^2.
      Hence we obatin
      ( 2x + 1 )/( ( x + 1 )( x + 2 )^2 ) = 1/( x + 2 ) + 3/( x + 2 )^2 - 1/( x + 1 ).

  • @chipchapchop5808
    @chipchapchop5808 2 หลายเดือนก่อน +1

    thank you, this is an amazing explaination!

  • @Mariosergio61
    @Mariosergio61 2 ปีที่แล้ว +3

    A big class. thanks.

  • @consciouseco775
    @consciouseco775 8 หลายเดือนก่อน +2

    Useful for maths 2B integration.

  • @Emannnnnnnnnnnnn
    @Emannnnnnnnnnnnn หลายเดือนก่อน +6

    I was looking at the Pokéball the whole video wondering why does he hold it allá the time, and then realized it was a microphone

  • @lindseysekhon9033
    @lindseysekhon9033 4 หลายเดือนก่อน +1

    thank you kind sir, taking calc 2 as a 4.5 week summer course and its rough

    • @bprpcalculusbasics
      @bprpcalculusbasics  4 หลายเดือนก่อน +1

      Yes, that is super hard. Best wishes to you! : )

  • @aes_user
    @aes_user 8 หลายเดือนก่อน +1

    Thank you so so much.This was very helpful

  • @imsonecka
    @imsonecka ปีที่แล้ว +1

    i finally understood thanks!!

  • @LeoChen-v6z
    @LeoChen-v6z 2 หลายเดือนก่อน +2

    Will repeating whatever confusing nonlinear partial fracctions thing be on the AP Calc BC exam? :)

  • @morgantillis4987
    @morgantillis4987 9 วันที่ผ่านมา

    Very helpful, thanks so much!!

  • @Yazeed696
    @Yazeed696 8 หลายเดือนก่อน +1

    before watching the video, ik i am going to understand it babe, lets gett itttt. midterm 3 tomorrow bout to ace it with only 6 hours of studying

  • @edwardrk35
    @edwardrk35 4 หลายเดือนก่อน +1

    Very Useful thankyou bro !! I love your video

  • @DeJay7
    @DeJay7 2 ปีที่แล้ว +1

    Just today I watched a video where partial fractions were used, insane timing.

  • @ajayiolajide6390
    @ajayiolajide6390 11 หลายเดือนก่อน

    Thanks a lot for this 'tutorial'😅. You could have chose your L1 but thanks for using the English language. I really appreciate it.

  • @mohamedibrahim1023
    @mohamedibrahim1023 2 ปีที่แล้ว +5

    Very nice video tho but why we need the numerator has to be only one degree less than the denominator?

    • @bprpcalculusbasics
      @bprpcalculusbasics  2 ปีที่แล้ว +5

      Bc if not, then we can do polynomial long division.

  • @AbhinavNegi-kc2gj
    @AbhinavNegi-kc2gj หลายเดือนก่อน

    Best explanation ❤

  • @MohammedRayaanPasha
    @MohammedRayaanPasha 14 วันที่ผ่านมา

    awesome explanation

  • @birukdamtew
    @birukdamtew ปีที่แล้ว

    IV. If (a * x ^ 2 + bx + c) ^ k , for a ne 0and * b ^ 2 - 4ac < 0 , is a factor in the denominator for k > 1 and (a * x ^ 2 + bx + c) ^ (k + 1) not a factor, then the corresponding sum of
    partial fractions to this factor is:
    (A_{1}*x + B_{1})/(a * x ^ 2 + bx + c) + (A_{2}*x + B_{2})/((a * x ^ 2 + bx + c) ^ 2) +***+ A k x+B k (ax^ 2 +bx+c)^ k ,
    where A_{1} ,...,A k and B_{1} ,...,B k are constants that we have to determine.
    I've seen a lot of videos but can't find this thing except my text book.

  • @4Shams
    @4Shams 2 ปีที่แล้ว +5

    I need a specified video for how to solve partial fractions, pls🙏

  • @shinbuk4238
    @shinbuk4238 หลายเดือนก่อน +1

    I love you so much omg man. thank you 😭

  • @hinochii4284
    @hinochii4284 2 ปีที่แล้ว +7

    Thank you for answering my biggest WHY .. I asked my professor about it and he didn't give me a clear answer.

  • @davidolosunde5046
    @davidolosunde5046 7 หลายเดือนก่อน

    Thanks sir, I love your teaching

  • @cubicle7544
    @cubicle7544 หลายเดือนก่อน

    Explained Well

  • @TRak598
    @TRak598 6 หลายเดือนก่อน

    The way I rationalize repeating factors is that you need the possibility of getting different values for A, B, C, etc, as a repeating factor is but a representation of a second degree equation.
    However, we only have one value for all the roots of such equations (delta is 0), hence you need to have a way to generate the other factors.
    Since the degree of repetition determinates the number of equal roots to the equation, you can use every exponential combination, and they will alow you to make MMC since the equation is divisible by all the degrees from 1 to its actual degree.
    TL; DR: It's not like I can't write B / (x-a)^n and call it a day. It's just that B won't be a single number in this case, so instead of writing it that way and then doing partial fraction stuff to it again, we skip directly to writing all the different factors with different powers of the same (x-a) bit as the divisors.

  • @mathisnotforthefaintofheart
    @mathisnotforthefaintofheart 8 หลายเดือนก่อน

    It can be done without the repeated factor of (x+2). Just write A/(x+1) with (Bx+c)/(x+2)^2. You get a system of three equations in 3 unknowns which is easily solvable.

  • @ammarns8858
    @ammarns8858 ปีที่แล้ว +1

    For more tutorials 😂😂 you know la kho haha. Thanks

  • @azmaeenadib3821
    @azmaeenadib3821 ปีที่แล้ว

    thank you sir, it helped a lot.

  • @roman.r8587
    @roman.r8587 9 หลายเดือนก่อน +1

    Thanks, super helpfull!!

  • @cloud_222
    @cloud_222 ปีที่แล้ว

    Thank you so much!!

  • @PhilaShibase
    @PhilaShibase 9 หลายเดือนก่อน

    Thank you so much that gave me a huge help.

  • @ridaanjumridaanjum4342
    @ridaanjumridaanjum4342 19 วันที่ผ่านมา

    Awesome winderfuly explained .. sir i have a question that while solving partial fraction why we put denominator factro equal to zero

  • @jeffreylin235
    @jeffreylin235 11 หลายเดือนก่อน

    That's the best explanation of this question.

  • @GF86123
    @GF86123 6 หลายเดือนก่อน +1

    This is now more confusing than before I watched this video!!

  • @KrishVashist-gn7il
    @KrishVashist-gn7il 11 หลายเดือนก่อน

    This guy is just great!!

  • @patricknazar
    @patricknazar ปีที่แล้ว +1

    Tried to get the answer to this question, it was nowhere to be found. Then all of a sudden this appears on my home screen. Wow. Thanks

  • @d9sign
    @d9sign 5 หลายเดือนก่อน

    Boom, I was searching for long time

  • @Golololololo
    @Golololololo 2 ปีที่แล้ว

    Wow so cool !
    Tysm❤

  • @ЕвгенияЛысенко-у4н
    @ЕвгенияЛысенко-у4н 16 วันที่ผ่านมา

    I like the last few seconds 😂 hehe❤ thanks for the video❤

  • @shurooqsaif9419
    @shurooqsaif9419 24 วันที่ผ่านมา

    I literally started laughing at 5:00 , the way he easily explained it. So thankful😭

  • @TheLabbening
    @TheLabbening ปีที่แล้ว +1

    Can we just admire how well he switches the markers xD

  • @AfesiMona
    @AfesiMona ปีที่แล้ว

    Thanks I got it good.. best explanation

  • @politicalwrong3289
    @politicalwrong3289 8 หลายเดือนก่อน +2

    3:36 But why degree in the numerator must be one less than degrees in the denominator?

    • @mathisnotforthefaintofheart
      @mathisnotforthefaintofheart 8 หลายเดือนก่อน +1

      Because x^2+2 vis not factorable over the reals and so a linear factor is allowed to be a remainder

    • @politicalwrong3289
      @politicalwrong3289 8 หลายเดือนก่อน

      Thank you, this helped me a lot! ^_^@@mathisnotforthefaintofheart

  • @raiyanreza9764
    @raiyanreza9764 8 หลายเดือนก่อน +1

    sorry but this was so funny 🤣 @06:34
    but kudos for the amazing explanation

  • @pto314
    @pto314 7 หลายเดือนก่อน

    Try to split as A(x+1) + B(x+1), and you’ll see why we need the 2nd denominator as (x+1)^2.

  • @theofelder6568
    @theofelder6568 7 หลายเดือนก่อน

    thank you, very helpful!

  • @munshatmuhtadee2013
    @munshatmuhtadee2013 10 หลายเดือนก่อน +1

    What if t is a second degree expression? If we follow the same process,we'll encounter sqrt in the denominator which will not be good to work with.

  • @vivada2667
    @vivada2667 11 หลายเดือนก่อน +3

    NOO WHERE ARE THE MORE TUTORILS 😭😭

  • @alexdemoura9972
    @alexdemoura9972 2 ปีที่แล้ว +2

    I like it: gold on black golden ratio.
    Maybe a coincidence, these last weeks I am working on statistical techniques to be applied on Logistics, Demography, Approximation, Politics (solutions for Gerrymandering) and so on... golden ratio has a fundamental role in these techniques, as an alternative number for Nature and Human objects which dimensions have unknown statistical distribution.

  • @dan_mirnejhad
    @dan_mirnejhad ปีที่แล้ว +3

    why does the degree on the top have to be one less than the degree on the bottom when setting up the partial fractions?

    • @bprpcalculusbasics
      @bprpcalculusbasics  ปีที่แล้ว +2

      Bc if not, then we can do long division to break it down

    • @carultch
      @carultch 10 หลายเดือนก่อน +1

      If the degree on top, is equal to, or greater than, the degree on bottom, then you can simplify the rational expression, into a separate polynomial added to a fraction. Either by adding zero in a fancy way, to form a term you can cancel, or by using polynomial division. The polynomial terms on their own, once extracted from the fraction, can be handled with the power rule.
      As for why it is one less, rather than two less, the reason is that you'll get an indeterminate system of equations when attempting to solve for coefficients, if you don't have a big enough polynomial on top of any given term. You could "get lucky" and end up with a highest degree term of the numerator with a coefficient of zero, but in general, you need at least a polynomial on top of a degree one less, than the degree of the polynomial on bottom.

    • @carultch
      @carultch 10 หลายเดือนก่อน +1

      As an example, given:
      x^3/[(x + 1)*(x + 2)]
      I can simplify this to:
      x - 3 + (7*x + 6)/[(x + 1)*(x + 2)]
      Once in this form, the x - 3 part, is all set for calculus applications. It's just the power rule to either differentiate or integrate it.
      All that remains for partial fractions is:
      (7*x + 6)/[(x + 1)*(x + 2)]
      This one is a proper fraction, with a linear term on top, and a factored quadratic on bottom.
      The simplified expression after partial fractions is complete, is:
      x - 3 - 1/(x + 1) + 8/(x + 2)

  • @OdetaZenelaj
    @OdetaZenelaj 5 หลายเดือนก่อน

    u helped me soo much❤

  • @ImPrettyHomeless
    @ImPrettyHomeless 3 หลายเดือนก่อน

    6:40 for 4). why do we still use a constant for the x^2, x^3, x^4?

  • @lame77151
    @lame77151 7 หลายเดือนก่อน +1

    i love you man

  • @TheHansaj
    @TheHansaj 8 หลายเดือนก่อน

    Very helpful concept. i'd do you a favor- Say it like, "two toe real".

  • @Tall-county01
    @Tall-county01 20 วันที่ผ่านมา

    His the best thank you so much