Solving Single Linear Diophantine Equation in three variables

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ม.ค. 2025

ความคิดเห็น • 16

  • @nurularafah6353
    @nurularafah6353 ปีที่แล้ว +3

    thank you for your great explanation ma'am. you really help me😊❤

  • @SayaHidup.101
    @SayaHidup.101 9 หลายเดือนก่อน

    Thanks ma'am 🙏🏼

    • @drpriti30
      @drpriti30  7 หลายเดือนก่อน

      Thank you so much

  • @Amantheparadise
    @Amantheparadise 2 ปีที่แล้ว +2

    Nice

  • @subratausha
    @subratausha 11 หลายเดือนก่อน

    please mention the mane of the theorem that you have used

    • @drpriti30
      @drpriti30  11 หลายเดือนก่อน

      I do not think the theorem has a name . It is proved using induction.

  • @pradipdolai747
    @pradipdolai747 2 ปีที่แล้ว +2

    Need proof of the theorem

    • @egoxagony4623
      @egoxagony4623 2 ปีที่แล้ว +2

      a|(bx +cy), therefore a|(bx +cy +fz +.....+nn) if it divides gcd. this is one of the first rule of divisibility, which is bezouts theorem

  • @bikonshill5535
    @bikonshill5535 4 ปีที่แล้ว +2

    Thanks for Diophantine equation.

  • @tejasasegaonkar4089
    @tejasasegaonkar4089 4 ปีที่แล้ว +2

    In ur eqn you were always able to equal two variables with 1 but in my eqn its not working ......
    Will u pls solve
    6x + 10y + 15z = -1

    • @pritibajpai2700
      @pritibajpai2700 3 ปีที่แล้ว +1

      As the g.c.d(6,10,15)= 1 which divides the right hand side , solution exists
      Take any two terms of 6x + 10y + 15z, lets take 10y + 15z now equate it to g.c.d(10,15)u
      10y + 15z =5u....(1)
      Substitute this original equation we get 6x + 5u =-1 this is an equation in two variables
      6(-1) + 5(1) =-1
      x=-1 +5t
      u=1-6t
      Substitute u in (1) and solve
      2y+3z=1-6t
      we can see 2(-1)+ 3(1)= 1 multiply by 1-6t all over
      2(6t-1) +3(1-6t)=1-6t
      y= 6t-1 + 3k
      z=1-6t -2k
      x=-1+5t where t and k can take values 0,1,2,...-1,-2,...
      You can check if we take particular value t0 and k=0 we get x=-1,y=-1 and z=1
      substitute in original equation it is satisfied

    • @pritibajpai2700
      @pritibajpai2700 3 ปีที่แล้ว +1

      As the g.c.d(6,10,15)= 1 which divides the right hand side , solution exists
      Take any two terms of 6x + 10y + 15z, lets take 10y + 15z now equate it to g.c.d(10,15)u
      10y + 15z =5u....(1)
      Substitute this original equation we get 6x + 5u =-1 this is an equation in two variables
      6(-1) + 5(1) =-1
      x=-1 +5t
      u=1-6t
      Substitute u in (1) and solve
      2y+3z=1-6t
      we can see 2(-1)+ 3(1)= 1 multiply by 1-6t all over
      2(6t-1) +3(1-6t)=1-6t
      y= 6t-1 + 3k
      z=1-6t -2k
      x=-1+5t where t and k can take values 0,1,2,...-1,-2,...
      You can check if we take particular value t0 and k=0 we get x=-1,y=-1 and z=1
      substitute in original equation it is satisfied

  • @daniellachiche270
    @daniellachiche270 10 หลายเดือนก่อน

    Top !

    • @drpriti30
      @drpriti30  7 หลายเดือนก่อน

      Thank you so much

  • @TheSublimekar
    @TheSublimekar 3 ปีที่แล้ว +2

    👍