How modern search engines work - Vector databases explained! | Weaviate open-source

แชร์
ฝัง
  • เผยแพร่เมื่อ 13 ม.ค. 2025

ความคิดเห็น • 26

  • @bryanbischof4351
    @bryanbischof4351 3 ปีที่แล้ว +16

    This is really well presented. One further topic for ppl to investigate if they’re curious is the latent spaces that the vectors are encoded with, the distance functions in those LS, and how traditional lookups might suffer.

  • @internetbro6519
    @internetbro6519 ปีที่แล้ว +2

    I just found your channel and you are awesome! Love the whisper at the end (yup, it's the main reason I'm leaving this comment 😃 such great personality), well done!

  • @DerPylz
    @DerPylz 3 ปีที่แล้ว +10

    Very informative! Thanks!
    Also: Congrats on the 7k subs! 🎉

  • @dawidtaborski
    @dawidtaborski ปีที่แล้ว +3

    Thank you for this content.

  • @ChatGPT-ef6sr
    @ChatGPT-ef6sr ปีที่แล้ว +2

    Super sleek explanation

  • @bamigbadeopeyemi2953
    @bamigbadeopeyemi2953 3 ปีที่แล้ว +7

    This presentation took away the complexity at comprehending what vector search engine is. I was totally lost on the concept but got a clear understanding of what Ai search engine is general. Thanks for sharing 😘. With Weaviate, vector search engine at scale certainty is 💯✍🏼

  • @ThamizhanDaa1
    @ThamizhanDaa1 2 ปีที่แล้ว +4

    Your channel is so underrated! I'm a PhD student and this is so helpful!!

    • @AICoffeeBreak
      @AICoffeeBreak  2 ปีที่แล้ว +3

      Thanks! This makes me so happy being a PhD student too!

  • @WhatsAI
    @WhatsAI 3 ปีที่แล้ว +6

    Such a great subject to cover! Congrats on the sponsor as well! Super well explained as always!

  • @wii3willRule
    @wii3willRule 3 ปีที่แล้ว +8

    Your channel is so useful, as someone who's beginning to work in the world of AI

    • @AICoffeeBreak
      @AICoffeeBreak  3 ปีที่แล้ว +4

      Thanks! Making useful things is our goal. 😊

  • @adithyavenkateswaran7908
    @adithyavenkateswaran7908 3 ปีที่แล้ว +7

    That is a brilliant explanation! Love it!!

  • @dawid_dahl
    @dawid_dahl ปีที่แล้ว +2

    Excellent presentation! 🙌🏻

  • @paleyshow
    @paleyshow ปีที่แล้ว +1

    This is super helpful and very intuitively explained, finally understand vector databases! :)

  • @Skinishh
    @Skinishh 2 ปีที่แล้ว +2

    Very well explained! However, usually the first step in a search engine is a candidate selection step, that reduces the number of candidates with a faster algorithm. Performing similarity matching between your query and EVERY item in the database is too heavy to compute in 1-2 seconds.

  • @高长宽
    @高长宽 3 ปีที่แล้ว +9

    wonderful!

  • @ssss-u7w
    @ssss-u7w 11 หลายเดือนก่อน

    do u have any example with Vector Geo data ? please make video on that that

  • @elinetshaaf75
    @elinetshaaf75 3 ปีที่แล้ว +8

    Cool

  • @Diego0wnz
    @Diego0wnz 3 ปีที่แล้ว

    How do transformers understand abbreviations or bigram/trigrams on a character level of words? I never understand how this preprocessing step is done, I only learned about the old elmo method

  • @amparoconsuelo9451
    @amparoconsuelo9451 ปีที่แล้ว

    Please give a Python code to search vector database.