How to Read Math in Deep Learning Paper?

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ม.ค. 2025

ความคิดเห็น • 173

  • @mamotivated
    @mamotivated 2 หลายเดือนก่อน +15

    Absolutely beutifully articulated video, it felt like a poem. Great work.

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      Oh wow, thanks for the kind words really appreciate it.

  • @Samuel19356
    @Samuel19356 3 หลายเดือนก่อน +53

    Saw a random screenshot about this video on twitter, so glad I came to watch, thanks for the insights!

  • @Antoniothescientist
    @Antoniothescientist 2 หลายเดือนก่อน +27

    As an AI/ML practitioner with no proper math education, I find this video very helpful for understanding the complexity of the algorithms and ensuring proper implementation for my use case. Would love to see more content like this!

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน +1

      Glad it was helpful, do let me know if you have topic requests!

  • @shrek22
    @shrek22 2 หลายเดือนก่อน +6

    I literally paste the paper itself and parts into machine learning. And it explains it. Super helpful

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      That's one way to go about it!
      This process would be super useful with a context aware LLM about cutting edge research like Galactica:
      arxiv.org/abs/2211.09085
      Not sure if that model is still available though given the controversy it had.

  • @kanstantsinmalikau7598
    @kanstantsinmalikau7598 2 หลายเดือนก่อน +4

    With each minute, this video just keeps getting better!
    I’ve already subscribed and decided it’s the best video I’ve seen in months.
    If it keeps going like this, I might have to drop everything and dedicate my life to printing papers and making notes there!
    Thank you 🙏

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน +1

      Such a nice comment, thanks it's really motivating!

  • @JasonWilliams-b3e
    @JasonWilliams-b3e หลายเดือนก่อน +2

    Game Changer thank you, Ive been studying for years and all I've ever needed was a literate to compliment my evaluation and provide integrity for my assumptions. Your Much Appreciated my good sir.

  • @ArjoRoy-pe6tf
    @ArjoRoy-pe6tf 2 วันที่ผ่านมา +1

    Started 2025 with this video. Finally got a good grasp on PPO, RLHF today following your advice. Can't thank more! 👑

    • @deeplearningexplained
      @deeplearningexplained  2 วันที่ผ่านมา

      Awesome work, keep it up! Great start to 2025! 👏👏👏

  • @uaua-qm2gp
    @uaua-qm2gp 2 หลายเดือนก่อน +1

    Man, you are doing the great job on this channel. Wish you the best luck with developing it!

  • @amunif_
    @amunif_ 3 หลายเดือนก่อน +138

    I really wish there were courses in CS master’s degrees, teaching how to decipher the math in AI research papers

    • @deeplearningexplained
      @deeplearningexplained  3 หลายเดือนก่อน +16

      Yeah, that would have been helpful haha.
      However I had a cool course during my PhD in which every week we were reviewing a computational neuroscience paper.
      It was cool because we were digging into the code + we had a lecture with a similar style I adopted in my channel.
      It really helped see behind the veil of the papers method section!

    • @alikin
      @alikin 3 หลายเดือนก่อน

      @@deeplearningexplained link?

    • @jerahmeelsangil247
      @jerahmeelsangil247 2 หลายเดือนก่อน +7

      Yeah, in Italy by the completion of bachelor degree in Computer Engineering you are in condition to read, understand and in some cases write papers atleast published in ARXIV

    • @IngramSnake
      @IngramSnake 2 หลายเดือนก่อน

      @@jerahmeelsangil247that’s cool but do they actually teach you how to do each of those things before requiring you to understand them? I feel this is much of the problem: there’s an element of show-off that keeps things closed off. 😂 this video is amazing ❤

    • @dylanhafner7608
      @dylanhafner7608 2 หลายเดือนก่อน +7

      You shouldn’t be trying to “decipher” it…. You should actually know math

  • @sepro5135
    @sepro5135 2 หลายเดือนก่อน +8

    I dont do CS or ML, but am getting into advanced Lattice Bolzmann stuff for Fluid Simulation, where a lot more basic understanding Is required than here (obviously, as the video is intended for a wider audience) but it was great to see the steps I usually take being actually formalized and first reasoning myself through this particular problem, before watching you do it, which worked pretty good. Overall great video, especially for ‚beginners‘

  • @Steven-gy9gx
    @Steven-gy9gx หลายเดือนก่อน +1

    Thanks for sharing! I have look through the video, and what I learned from this video is form my own tuition about the formulas (step by step from the first formula in papers), and I should summarize my intuition for the next time I read this paper.

    • @deeplearningexplained
      @deeplearningexplained  หลายเดือนก่อน

      Exactly, then you hold onto this vivid intuition every time you read the formula back.
      If you do this with enough of the core formulas in your field, reading research will become a breeze.

  • @AlexsandroPessoa-m9x
    @AlexsandroPessoa-m9x 2 หลายเดือนก่อน +16

    Sincerely, after taking Calculus 3, 4, and Numerical in college, it feels like a trauma that will last for the rest of my life. Every time I use a gradient, I remember having to calculate it using only my paper.

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน +2

      Haha, at least you have a deep understanding of the material which is essential to understand topics that build upon it.
      Worth the PTSD!

    • @romanemul1
      @romanemul1 2 หลายเดือนก่อน

      What is calculus 4 ?

  • @Dom-zy1qy
    @Dom-zy1qy 2 หลายเดือนก่อน +24

    Honesty just work through a math book, you will be able to read math in the ML domain pretty easy. I read "Mathematics for Machine Learning", it was a struggle for me, but taught me a lot of very useful skills.

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      Nice, will give it a read thanks for the recommendation!

  • @Noah-cf6zd
    @Noah-cf6zd 2 หลายเดือนก่อน +1

    really enjoyed this video. Would love more content like this. Maybe you could look at some interesting papers and break them down in this way. That would really help people get better at reading these papers and practise intuitively understanding them. Subscribed ❤

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      I’m happy you enjoyed the content and yes, I’ll be breaking down some more paper in the following weeks! :)

  • @ZenoDiac
    @ZenoDiac หลายเดือนก่อน +1

    Thanks for teaching us, Rudo!

  • @evgenirusev818
    @evgenirusev818 2 หลายเดือนก่อน +2

    Make more content dude. You’re good at this.

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      Thanks man, really appreciate the comment. Will do! 🫡

  • @Fleniken
    @Fleniken 2 หลายเดือนก่อน +2

    1. What's your sketching software that you put screenshots into?
    2. How did you know to look in the "Adam" paper for the missing formula, and how did you find it?
    3. What papers should I prioritize reading if I want to become a research engineer. And should I try tinker with the papers concepts to try put out my own blogs/mini-papers to demonstrate on workshops / to potential employers?

    • @MahmoudSayed-hg8rb
      @MahmoudSayed-hg8rb 2 หลายเดือนก่อน +1

      The SW is microsoft whiteboard
      Also im interested in his answer to your 3rd question so plz someone @ me if he replies

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน +4

      For sure
      CC: @MahmoudSayed-hg8rb
      1. It's TLDRAW, it's free over here: www.tldraw.com/
      2. I know to look into the Adam paper because they mentioned that phrase in the article "Note that only the last expression differs from vanilla Adam". So I followed the reference for Adam and then in the paper I followed the flow until I hit the algorithm section (as you saw it was pseudo-code, not formulas).
      3. My two cents is to start out with the classical architecture or core discovery of the last decade in the specific field you are interested. Read them and reproduce the result gradually. These are great to start out because they already have been implemented in different ways in bigger software package (Pytorch, Tensorflow). So you won't feel too much alone.
      Once you are getting the hang of it you can start reading and tinker with more recent result.
      I would suggest setting up a Github Repo for these reproduction and work on them gradually. No need to reproduce 100% of all the result in a paper, but by gradually working through the most important one you will start to get a hang of how the authors were thinking while getting there result. Plus you will have a set of nice project to walkthrough with potential employers!

    • @MahmoudSayed-hg8rb
      @MahmoudSayed-hg8rb 2 หลายเดือนก่อน

      @@deeplearningexplained Thanks for @ing me and thanks for your answer 🫡🫡

    • @MahmoudSayed-hg8rb
      @MahmoudSayed-hg8rb 2 หลายเดือนก่อน

      @@deeplearningexplained Thanks for @ing me
      and thanks for the answer, really appreciated.

  • @SUBH-PRIYA-10
    @SUBH-PRIYA-10 2 หลายเดือนก่อน +2

    Highest viewed video after 5 years 😊 Congratulations 🎉

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน +2

      Yeah people seems to like this one, glad it is useful!

  • @martinsteinmayer3557
    @martinsteinmayer3557 3 หลายเดือนก่อน +2

    Great video man! Very well explained!

    • @deeplearningexplained
      @deeplearningexplained  3 หลายเดือนก่อน

      Thanks, glad it was useful!
      Let me know if you have request for the next tutorial.

  • @LearnBotics
    @LearnBotics 2 หลายเดือนก่อน +1

    thank you for your time and effort and you got my subscription too,please make more like this

  • @dub161
    @dub161 3 หลายเดือนก่อน +11

    In IISc, any student from any dept. are not allowed to touch any course from Intelligent Systems pool/AI dept. unless you are done with Linear Algebra, Stochastic Models/Random Process and Optimization and Analysis course.
    No AI for you unless you are cracked in Math.

    • @deeplearningexplained
      @deeplearningexplained  3 หลายเดือนก่อน +6

      Those are great pre-requisite for undergraduate or graduate AI courses 👍

    • @Chadpritai
      @Chadpritai 3 หลายเดือนก่อน

      are you at IISc dub161?

  • @sitrakaforler8696
    @sitrakaforler8696 2 หลายเดือนก่อน +2

    woooow was a cool video man ! keep it up

  • @bongkem2723
    @bongkem2723 หลายเดือนก่อน +1

    yesssss, this is what we mere-human need, to understand weird symbols and Greece characters. That's what prevent us to quickly understand scientific researches which should help us tremendously in our own domain.

    • @deeplearningexplained
      @deeplearningexplained  หลายเดือนก่อน

      Haha yes that’s the spirit.
      A cool trick that I learned from the founder of fast.ai is to rewrite the formula with very descriptive name.
      The formula looks ugly, but it’s MUCH more understandable.

  • @rastko614
    @rastko614 2 หลายเดือนก่อน +2

    This is gold.

  • @massithegame8753
    @massithegame8753 2 หลายเดือนก่อน +5

    Very good explanation! You’re the Jon Snow of mathematics.😅

  • @renanmonteirobarbosa8129
    @renanmonteirobarbosa8129 หลายเดือนก่อน +1

    You forgot to mention that some Journals have their own context, sometimes the authors rely on that and you can become confused because some operations, terms and symbols can mean different things depending on the Journal.

    • @deeplearningexplained
      @deeplearningexplained  หลายเดือนก่อน

      Really true, always check out that sort of background context if the methodology doesn’t seem to make sense!

  • @kshitijdesai2402
    @kshitijdesai2402 2 หลายเดือนก่อน +1

    Very insightful!

  • @IgorKovacs02
    @IgorKovacs02 หลายเดือนก่อน +1

    you got my sub!

    • @deeplearningexplained
      @deeplearningexplained  หลายเดือนก่อน +1

      Thanks Igor, don't hesitate to let me know if you have feedback on the content!

  • @eldarzakirov5571
    @eldarzakirov5571 3 หลายเดือนก่อน +2

    As an alternative to paper, I may suggest to use eink tablet with screen 13.3" and with drawing support, e.g. Boox Max Lumi, which alliws to draw directly on pdf.

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      Ah good idea, I also heard great things from ReMarkable!

  • @conradgnad
    @conradgnad 2 หลายเดือนก่อน +1

    that was great, you are legend! thank you so much!

  • @HimanshuPakhale-n3i
    @HimanshuPakhale-n3i 2 หลายเดือนก่อน +1

    Thanks for sharing ❤

  • @aaryanbhagat4852
    @aaryanbhagat4852 3 หลายเดือนก่อน +3

    great explanation

  • @rahulmalik1083
    @rahulmalik1083 2 หลายเดือนก่อน +2

    Thanks to my exposure to advanced macroecon, the formulas don't seem crazy.

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      The more exposed to math you are the easier it gets for sure!

  • @lukamoz
    @lukamoz 3 หลายเดือนก่อน +3

    Ok as coding/math enthusiast who is looking into ML, i have understanding of calc 1,2,3, some stats and L.algebra how long it takes you guys to read paper like this (30 pages) from top to bottom? and implement it. I know on KAGGLE there are torunaments and they tend to use reserach papers for solutions.

    • @deeplearningexplained
      @deeplearningexplained  3 หลายเดือนก่อน +4

      Implementing the idea behind QHM and QHAdam is very fast, less than 1h. This paper is also very straightforward since it’s well written.
      Reproducing all the result in this paper though can take more time (to set up the experiments).
      But generally, reproducing a paper main result can take anywhere from a few hours to a full month depending on the complexity and how much I know about that subfield.

  • @SamiNousiainen-j2o
    @SamiNousiainen-j2o 2 หลายเดือนก่อน +1

    I did not read the paper and I did not watch your video completely either, but it seems (as you present it) that the Momentum algorithm and QHM algorithm lead to the the same result. This is because in the QHN algorithm you are introducing another parameter (v) that does not appear in the Momentum algorithm, but you are again taking a weighted average. I.e. if you expand the update rule for QHM you get:
    theta_t+1 = theta_t - a [v b g_t + (1 - v b) grad L^_t(theta_t)]
    which is effectively the same as the Momentum algoirithm with a parameter v b.

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      I thought the exact same, until I read appendix A.8 (they show it's not equivalent) on page 18.
      -> arxiv.org/pdf/1810.06801

  • @amirs6472
    @amirs6472 3 หลายเดือนก่อน +1

    great, thanks for video

  • @jakeaustria5445
    @jakeaustria5445 3 หลายเดือนก่อน +1

    Thank You❤

  • @pratiknapit8494
    @pratiknapit8494 3 หลายเดือนก่อน +6

    what about harder stuff when they talk about data manifolds or proving the convergence of stochastic gradient descent?? That stuff is way too difficult unless you have taken graduate math courses after 4 years of undergrad maths

    • @deeplearningexplained
      @deeplearningexplained  3 หลายเดือนก่อน +7

      Great question!
      What you need to do is start in reverse, go from the intuition and figure out the path from the primitives.
      A manifold is named like this for a reason that make intuitive sense for people understanding the mechanism behind.
      What I would do is first look at the path from primitives to result from many people/educators.
      Then I would make sure I understand what we are starting with.
      Finally I would take a step by step approach just like we did in this video and go fetch the information I’m lacking externally.
      Knowing the math well sure help speed the process up, but you can still figure out complex topic like that no matter your level.

    • @pratiknapit8494
      @pratiknapit8494 3 หลายเดือนก่อน +2

      @@deeplearningexplained thank you!

  • @mprone
    @mprone 2 หลายเดือนก่อน +1

    I'm under the impression that formulas have disappeared from DL papers since foundation models were introduced. Now most people build systems around these huge models. This also applies to big institutions such as Google, Microsoft, IBM, MIT, Stanford etc.
    What do you think?

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      True, there is usually less formula (at least in the main paper). However, they can still usually be there in the appendix.
      Some of the early DL papers were a bit too math heavy too, so I think it's a balance. But definitely, the LLM papers are light in general in math since the discovery is more related to experiments on these huge model than an algorithmic change.

  • @IgorStassiy
    @IgorStassiy 2 หลายเดือนก่อน +1

    What software do you use to take visual notes?

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      Hey I’m using TLDRAW, it’s free and pretty slick!

    • @IgorStassiy
      @IgorStassiy 21 วันที่ผ่านมา +1

      :) gentle bump

    • @deeplearningexplained
      @deeplearningexplained  20 วันที่ผ่านมา

      @@IgorStassiy Hey sorry man, thought I answered the question!
      It's TLDRAW: www.tldraw.com/
      Very solid app + it's free.

  • @leolacic9442
    @leolacic9442 2 หลายเดือนก่อน +1

    It's finaly whole explanation. Can I to go on the relax?

  • @whoami6866
    @whoami6866 2 หลายเดือนก่อน +12

    You know nothing, Jon Snow... but deep learning?

  • @jaidansvevo439
    @jaidansvevo439 2 หลายเดือนก่อน +1

    What application do you use to list the main aspects of the paper?

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      It's TLDRAW: www.tldraw.com/ ! Great app and it's free!

    • @jaidansvevo439
      @jaidansvevo439 2 หลายเดือนก่อน +1

      @@deeplearningexplained Thanks. Appreciate it!

  • @fmustafatuglu
    @fmustafatuglu 2 หลายเดือนก่อน +2

    which sketch program is this?

  • @kajalmishra6201
    @kajalmishra6201 หลายเดือนก่อน +1

    OMG. You exist!

  • @shahulrahman2516
    @shahulrahman2516 2 หลายเดือนก่อน +1

    I have completed LA, Probability and ML course. Have not done DL. I want to learn transformers and LLM's to conduct research upon it. Can you give me some directions.

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน +1

      Andrej Karpathy content is absolutely awesome to get started right in transformers and LLM:
      th-cam.com/video/zjkBMFhNj_g/w-d-xo.htmlfeature=shared

  • @luka.software
    @luka.software 3 หลายเดือนก่อน +1

    Do you have any paper recommendations for someone that is just getting started with DL?

    • @deeplearningexplained
      @deeplearningexplained  3 หลายเดือนก่อน +1

      What background knowledge do you have and what aspect of deep learning interest you most?

    • @luka.software
      @luka.software 3 หลายเดือนก่อน +1

      @@deeplearningexplained I have a bachelors in software engineering and a bit of experience using SAM. Don’t have a specific interest but the image generation models like MJ are cool to me.

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      Okay neat, if you have a general interest then I would recommend the Deep Learning book.
      It’s not a paper per se, but it’s written with a similar flow as research paper and has pretty good references to the literature.
      It’s accessible though, so start with that and whenever you see a result that catch your attention dive into the base research it reference.
      This way you get both the benefit of context and with the depth of deep learning research.
      Hope it helps!

    • @luka.software
      @luka.software 2 หลายเดือนก่อน +1

      @@deeplearningexplained thanks i’ll check it out!

  • @ElvB
    @ElvB หลายเดือนก่อน +1

    Yacines always cooking 😂

  • @345Dx
    @345Dx หลายเดือนก่อน +1

    Thank you Jon Snow

  • @luissaybe
    @luissaybe 2 หลายเดือนก่อน +1

    Damn, Kit Harington!

  • @DRAI-ow1nq
    @DRAI-ow1nq 2 หลายเดือนก่อน +1

    challenge for you AI experts; please develop a model that can take in a picture of a math formula, then go through and explain step by step on how to interpret or solve the equation, higlighting the symbols and variables while running a speech synthesizer or text generation to explain the logic.

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      Very interesting project indeed.
      If I had to run it though, I would split that into 3 different sub-systems:
      1. OCR specialized in mathematical notation to extract the symbols and put it into a computer friendly format.
      2. Use a specialized model like AlphaProof (or open source variant) to do proof or to generally break down the formula into steps.
      3. Finally a LLM to summarize the structured output into something a layperson can understand.
      This way you avoid as much as possible the potential hallucination from a general purpose LLM, while keeping it's natural conversational power.

  • @dheocahyo7721
    @dheocahyo7721 หลายเดือนก่อน +1

    is that you John Snow?

  • @adicandra9940
    @adicandra9940 หลายเดือนก่อน +1

    You know something, John Snow

  • @sinan_islam
    @sinan_islam 2 หลายเดือนก่อน +2

    Reading math notation is a huge obstacle for me.

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน +1

      Did the tips in the video help a bit?

    • @sinan_islam
      @sinan_islam 2 หลายเดือนก่อน +2

      The video helped alot. Thank you!

  • @LightEnergyTrader
    @LightEnergyTrader 2 หลายเดือนก่อน +1

    Your mic makes a sudden boom sounds which is making ears be so shocked time to time and is not good for ears, please fix it. Other than that super awesome stuff

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน +1

      Really sorry for that, will add a audio processing step in my recording workflow! 🙏

    • @LightEnergyTrader
      @LightEnergyTrader 2 หลายเดือนก่อน

      @@deeplearningexplained Thank you, great stuff in general :) keep it up

  • @walterobi535
    @walterobi535 3 หลายเดือนก่อน +1

    What app do you use to split the pdf in sections, and dragging them around. Noob haha

    • @deeplearningexplained
      @deeplearningexplained  3 หลายเดือนก่อน +1

      I take screenshot of them and then I paste them in the TLDRAW free app!

    • @walterobi535
      @walterobi535 3 หลายเดือนก่อน +1

      @@deeplearningexplained thanks.

  • @hahahaha-y9p
    @hahahaha-y9p หลายเดือนก่อน +1

    Already at the end of my dual degree in computer science and applied maths.. This video came a little too late :(

    • @deeplearningexplained
      @deeplearningexplained  หลายเดือนก่อน

      Learning never stops! 👍
      Now you know how to read the math in deep learning paper + you have solid theoretical foundation.

  • @drprince8766
    @drprince8766 3 หลายเดือนก่อน +4

    Any Udemy course.:D

  • @Chadpritai
    @Chadpritai 3 หลายเดือนก่อน +2

    nice yapcine

  • @EkShunya
    @EkShunya 3 หลายเดือนก่อน +1

    can u please please setup a discord community? 🙏🏾
    if u need help on this lemme know

    • @deeplearningexplained
      @deeplearningexplained  3 หลายเดือนก่อน

      Hey there, it's already setup over here :)
      📌 discord.com/invite/QpkxRbQBpf

    • @EkShunya
      @EkShunya 3 หลายเดือนก่อน +1

      @@deeplearningexplained thank you :)

  • @paulopacitti
    @paulopacitti หลายเดือนก่อน +1

    oh, so that's another Yacine?

  • @sidharthcs2110
    @sidharthcs2110 3 หลายเดือนก่อน +2

    All i saw was some woodoo magic

  • @achunaryan3418
    @achunaryan3418 2 หลายเดือนก่อน

    Learn deep learning math.

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน

      Nothing beat strong fundamentals that’s for sure!

  • @cedricharris-v2r
    @cedricharris-v2r 2 หลายเดือนก่อน +1

    Coo)l

  • @dffhhfhdifh
    @dffhhfhdifh 2 หลายเดือนก่อน

    simply go learn maths calculus statistics differential and then jump into ai.why you in AI when math statistics is basics of AI.

    • @BryWMac
      @BryWMac 2 หลายเดือนก่อน

      Well I think most ML practitioners have just a CS degree which typically don’t require beyond calc 3 and Lin alg 1. It’s just the way it is :/

  • @unknown-user001
    @unknown-user001 2 หลายเดือนก่อน +1

    reading deep learning paper is pain in the ass

  • @Guuggk_5678
    @Guuggk_5678 2 หลายเดือนก่อน +2

    Wtf was that thumbnail

  • @DuckGia
    @DuckGia 2 หลายเดือนก่อน

    Broken maths. Solely to tackle a trivial optimization but lacks fundamental analysis.

    • @deeplearningexplained
      @deeplearningexplained  2 หลายเดือนก่อน +1

      Hey, thanks for the feedback!
      How would you have ran this tutorial differently?

  • @KevinZhang-uh1il
    @KevinZhang-uh1il 2 หลายเดือนก่อน +1

    You know nothing John snow

  • @imaspacecreature
    @imaspacecreature 3 หลายเดือนก่อน +2

    No bullshit, I think in this "math" at times, but cannot even begin drawing a formula. 😂

    • @deeplearningexplained
      @deeplearningexplained  3 หลายเดือนก่อน +2

      Try to code it instead, it's much easier in my opinion than using formula to start out.

    • @imaspacecreature
      @imaspacecreature 3 หลายเดือนก่อน +2

      @@deeplearningexplained Yes! This is it. I've actually come up with some pretty interesting algorithms. I think in algorithm, it's strange, but yes I prefer to code it, then I can make a formula for what is happening. Perhaps it's kind of like sheet music. Also I'm working on a Neurosymbolic PHP only model, it's doing pretty well so far.

    • @redwingbeast1396
      @redwingbeast1396 2 หลายเดือนก่อน +1

      ​@@imaspacecreature thinking in algos. please teach me how to!!

    • @imaspacecreature
      @imaspacecreature 2 หลายเดือนก่อน

      @@redwingbeast1396 a while ago when I was younger my cousin took me to Kyoto, while there he decided to give me a pop quiz. He asked "In Japan, what is the tallest mountain in Japan?". I immediately knew I had access to it, but couldn't draw the memory in that instant. I in that moment, thought to my self "what if I rearrange my memories and sort by letter?", I did and upon reaching "F", "Mount Fuji" popped up in my mind.