Introduction to unit tangent, unit normal, and unit binormal vectors (Calculus 3 basics)

แชร์
ฝัง
  • เผยแพร่เมื่อ 20 ธ.ค. 2024

ความคิดเห็น • 25

  • @buddermybacon
    @buddermybacon 6 หลายเดือนก่อน +19

    Super cool that you’re doing calc III videos now. Very interesting and well explained as always 💯

  • @MrKoteha
    @MrKoteha 6 หลายเดือนก่อน +9

    Calculus 3 videos are very interesting! Can't wait for the next one

  • @paradox6647
    @paradox6647 5 หลายเดือนก่อน +4

    Loving this new series, please keep it up

  • @TroyBurgess-l2r
    @TroyBurgess-l2r 6 หลายเดือนก่อน +4

    Appreciate your help! Truly grateful!

  • @ianfowler9340
    @ianfowler9340 6 หลายเดือนก่อน +4

    Very, very nice presentation. So, ( apologies if I am spoiling your next video ) .....where, exactly, is vector N pointing?? - toward a very special point. Your current and recent videoes have already given us the answer. It is staring right at us.

    • @bprpcalculusbasics
      @bprpcalculusbasics  5 หลายเดือนก่อน +2

      You mean N is pointing at the center of curvature, right? 😃

    • @ianfowler9340
      @ianfowler9340 5 หลายเดือนก่อน +1

      @@bprpcalculusbasics Bang on!! So now break up the acceleration vector, R ' '(t) , into 2 rectangular componenets (not a_x and a_y) : instead, one in the direction of the tangent (a_t) and perpendicular to the tangent (a_n). This normal component point of acceleration, a_n, points right at the Center of Curvature. And if a point mass is moving along the curve, it's the a_n component of the accelaeration that makes it turn, whereas a_t increases or decreases the speed = |vector v|. So cool. Thanks, yet again, for another great video - Newton is smiling.

    • @bprpcalculusbasics
      @bprpcalculusbasics  5 หลายเดือนก่อน +1

      @@ianfowler9340 yes. I actually just did that video two days ago! And you can probably guess what comes after that! Btw, I am following the calc book by Thomas and I think it’s a fantastic book.

  • @tanman1000
    @tanman1000 2 หลายเดือนก่อน

    THANK YOU

  • @giack6235
    @giack6235 7 วันที่ผ่านมา

    Hello, thank you for the very nice video. I've got one question. By a physical point of view, you often refer to t as "time" and r'(t) as "speed" (as many books do). I claim this may not be the case, because, a curve is parametrized with a spatial parameter (e.g. an angle to parametrize every point of a circumference). If it would be parametrized by time, we would have the equation of motion of a point along the curve, not the curve itself! Am i right?

  • @Salt_Shaker
    @Salt_Shaker 2 หลายเดือนก่อน

    At 8:30 why are we allowed to drop the absolute value signs, I thought they were used for the magnitude and not absolute value?

    • @grahamrvalladarez4038
      @grahamrvalladarez4038 หลายเดือนก่อน +1

      i have this same doubt

    • @yasirmahsud4129
      @yasirmahsud4129 15 วันที่ผ่านมา

      ​@@grahamrvalladarez4038 Bcz ds/dt is positive...

  • @perekman3570
    @perekman3570 5 หลายเดือนก่อน +1

    I feel that the calc3 videos are in the wrong order somehow. For example, the Unit Tangent Vector has been mentioned i several videos already, but isn't explained until now. But the explanation is excellent, as per usual.

  • @willie333b
    @willie333b 5 หลายเดือนก่อน

    String

  • @charlesspringer4709
    @charlesspringer4709 6 หลายเดือนก่อน +1

    Differential Geometry is the coolest! Well, coolest except for Clifford Algebra and Geometric Calculus :-)

  • @ruud9767
    @ruud9767 6 หลายเดือนก่อน

    Deetee deeree! T! Deetee? Plus N! TNT. Boom!

    • @brycenbg9372
      @brycenbg9372 5 หลายเดือนก่อน

      Blind person be like: Why there are so many dt 😂 😂

  • @cyrusyeung8096
    @cyrusyeung8096 6 หลายเดือนก่อน +1

    Nice video. But please stop saying divide by dt (as in 1:53). It is not how derivative works.

    • @ianfowler9340
      @ianfowler9340 6 หลายเดือนก่อน +6

      I hear your frustration. But differentials are defined in such a way so as to force
      "the operation: [d by dx][of y]" to actually equal "the division: (differential of y)/(diffrerential of x)".
      That is, to force "dy by dx" to behave like a fraction - at least for mult. and division. There are no restrictions on the size of the diff. of x (or dx) - large or as small as you want, because:
      dx is defined as delta x and
      dy is defined as f '(x)*delta x = f '(x)dx. Re-arranging we obtain: "(diff. of y) divided by (diff. of x)" is indeed equal to f ' (x).

  • @samuraijosh1595
    @samuraijosh1595 6 หลายเดือนก่อน

    Dang why did this one fail so badly? The algorithm did you dirty

    • @perekman3570
      @perekman3570 5 หลายเดือนก่อน

      It will remain useful for students for years to come.