The Heisenberg Algebra part 1.

แชร์
ฝัง
  • เผยแพร่เมื่อ 30 ต.ค. 2024

ความคิดเห็น • 52

  • @cycklist
    @cycklist 3 ปีที่แล้ว +30

    I've watched every video you've ever made, and this is the first where I've no clue what you're talking about!

  • @hitzcritz
    @hitzcritz 3 ปีที่แล้ว +19

    Huge congrats on 100k subscribers, it's really nice to see channels like yours grow!

  • @djvalentedochp
    @djvalentedochp 3 ปีที่แล้ว +4

    congrats Michael, you are special

  • @namesurname1040
    @namesurname1040 2 ปีที่แล้ว +1

    I really like the series.I new those math from a physiscist perspective and I am glad that now I am lesrning it from a mathematiciams.I also wanted to note that its called free boson algebra because this is the exact algebra used in the second quantization of a free real scalar(bosonic) field,and more perceisly in the creation of the Fock space of a free boson(with of curse some normilizations )

  • @joem8251
    @joem8251 3 ปีที่แล้ว +1

    TLDR: thank you for your videos.
    I stopped at 7:30 because I have no idea what you're talking about; but I could tell you definitely know what you're talking about. You explain complex concepts concisely (I love that). I particularly enjoy how you organize and explain your organization of how these concepts come together. You've inspired me to learn a little more. I hope you teach something I can use.

  • @jeffreycloete852
    @jeffreycloete852 3 ปีที่แล้ว +1

    Thanks Prof Penn...thanks for another VOA video. .been looking forward to it after watching all of Sean Downes' videos on the Monster. .

  • @abdlazizlairgi9690
    @abdlazizlairgi9690 3 ปีที่แล้ว +5

    100k congrats 🥳💐

  • @BDCOMBO
    @BDCOMBO 3 ปีที่แล้ว +2

    Well done on reaching 100k you absolute wizzard!!!

  • @shivansh668
    @shivansh668 3 ปีที่แล้ว +2

    Congratulations prof. Penn for 100k 🥳🥳🥳

  • @maypiatt3766
    @maypiatt3766 3 ปีที่แล้ว +3

    Can’t wait to watch this whole series :)

  • @starshipx1282
    @starshipx1282 3 ปีที่แล้ว +1

    Congratz on 100k my boy

  • @dischqrge4846
    @dischqrge4846 3 ปีที่แล้ว +5

    Congrats on 100k

  • @KyleDB150
    @KyleDB150 3 ปีที่แล้ว +2

    fascinating to see this after having watched Leonard Susskind's "theoretical minimum" series, where he goes through the specifics of particle physics but without every mathematical detail.
    He treats creation and annihilation operators as abstract things that just behave a certain way, so its cool you hear you mention them as the result of all this set building stuff
    imma start from the start and try to understand it now lol

  • @stevenwilson5556
    @stevenwilson5556 3 ปีที่แล้ว +1

    Awesome to see you top 100k. Well done. May I suggest when you have videos that connect to previous videos you provide links to previous videos so that we can catch up if we missed a pre-req?

    • @MichaelPennMath
      @MichaelPennMath  3 ปีที่แล้ว

      This is happening. I have a big project over winter break to do this type of bookkeeping.

  • @ruinenlust_
    @ruinenlust_ 3 ปีที่แล้ว

    Though the topic is difficult, it's not that hard to follow. Thank you for uploading!

  • @marclinlin2799
    @marclinlin2799 3 ปีที่แล้ว

    很棒又有深度的 的教學

  • @angelogandolfo4174
    @angelogandolfo4174 3 ปีที่แล้ว +3

    That “ok, great” T-shirt is awesome!

  • @goodplacetostop2973
    @goodplacetostop2973 3 ปีที่แล้ว +4

    32:21

  • @jamesbailey6246
    @jamesbailey6246 2 ปีที่แล้ว

    How is H=span{alpha(m1)....alpha(mk)} generated by (alpha(-1) acting on the vacuum vector)? I can see why {alpha(m)|m

  • @jeremyredd4232
    @jeremyredd4232 3 ปีที่แล้ว

    Unrelated to my other post, is the answer to the homework 6a(-4)1? Also if I want to think about this in terms of partial derivatives is it 6d^2/(da(-3)da(-2)) (a(-4)a(-3)a(-2)1)?

  • @Walczyk
    @Walczyk 3 ปีที่แล้ว

    21:01 you said m_k

  • @johannesh7610
    @johannesh7610 3 ปีที่แล้ว +1

    I still don't understand the locality axiom. Multiplying by (z-w)^N shouldn't do anything, z and w even commute. What algebra of formal variables has zero divisors? And why should (z-w) be a zero divisor?

    • @aadfg0
      @aadfg0 3 ปีที่แล้ว +2

      Here's a 1 variable example suggesting why it matters. z+z^2+z^3+... and -1/z - 1/z^2 - 1/z^3 - ... are clearly different series. But when we multiply both by 1-z, we get 1.

    • @johannesh7610
      @johannesh7610 3 ปีที่แล้ว

      @@aadfg0 Interesting!

  • @mariochavez3834
    @mariochavez3834 3 ปีที่แล้ว +1

    100k yay!

  • @musicman9023
    @musicman9023 3 ปีที่แล้ว +5

    The title initially made me think of a Breaking Bad universe where Walter White teaches math instead of chemistry!

    • @PubicGore
      @PubicGore 3 ปีที่แล้ว +2

      The reason Walter named himself Heisenberg is out of respect of the physicist.

  • @AlwinMao
    @AlwinMao 3 ปีที่แล้ว

    A = (3)(2)(-4)(-2)(-3)I
    -3 commutes with anything but 3
    -2 commutes with anything but 2
    A = (-4)(3)(-3)(2)(-2)I
    (2)(-2) = (-2)(2) + [2,-2] = (-2)(2) + 2k, and (2)I = 0, 2kI = 2I so
    A = (-4)(3)(-3) 2 I
    Similarly for (-3)(3)
    A = (-4) 3 * 2 * I = 6 (-4) I
    Hope someone tells me if I understood it right thank you

  • @jeremyredd4232
    @jeremyredd4232 3 ปีที่แล้ว

    So if there are any string theorists that read this I'd love to know if I'm near the mark, or lost in the woods. There should be a Lie algebra which is the vector space H/DH. That lie algebra is where all the conserved quantities like the Hamiltonian live? There is an operator in H, alpha(-1) that is very much like a standard creation operator. You play commutation games to get rid of things that can't operate on the vacuum like in standard QM with density matrices.
    Where I'm really lost is as follows. There is not just one operator that can act on the vacuum, alpha of any negative integer can. There is also not only one operator that can't act on the vacuum, but any alpha of a positive integer can't. What do these other operators mean physically? What would a density matrix look like in this algebra? Finally is the translation operator like a super-translation?

  • @fiona1204
    @fiona1204 2 ปีที่แล้ว

    how does the parity work in this algebra?

  • @user-A168
    @user-A168 3 ปีที่แล้ว

    Good

  • @evanev7
    @evanev7 3 ปีที่แล้ว +1

    For the HW:
    α(3)α(2)α(-4)α(-2)α(-3)1 = α(-4)α(3)α(-3)α(2)α(-2)1 = α(-4)[α(-3)α(3) + α(-2)α(2) + 5k]1 = 5α(-4)1.

    • @hyppie1234
      @hyppie1234 3 ปีที่แล้ว +2

      Hej, where does the 4k in the third expression come from? I get a 2k from α(2)α(-2) and a 3k from α(3)α(-3) and hence 6α(-4)1as result.

    • @evanev7
      @evanev7 3 ปีที่แล้ว

      @@hyppie1234 Oh, I thought α(3)α(-3) gave you a 2k rather than a 3k.

    • @evanev7
      @evanev7 3 ปีที่แล้ว

      @@hyppie1234 Looking back over it you're right it gives you a 3k, but that should bring the result to 5α(4)1, no?

    • @hyppie1234
      @hyppie1234 3 ปีที่แล้ว +2

      ​@@evanev7Using the commutator I get α(-4)α(-2)α(2)α(-3)α(3) 1+2α(-4)α(-3)α(3)1+3α(-4)α(-2)α(2) 1+6α(-4) 1, but α(n)1=0 for n \geq 0 by definition, so only 6α(-4) 1 survives

    • @jeremyredd4232
      @jeremyredd4232 3 ปีที่แล้ว +1

      @@hyppie1234 Yay that's what I got!

  • @michaelempeigne3519
    @michaelempeigne3519 3 ปีที่แล้ว

    also Prove the Error Bound for Simpson's Rule

  • @debayuchakraborti1963
    @debayuchakraborti1963 3 ปีที่แล้ว +4

    We all wanted a livesolve didnt we?

  • @JMTchongMbami
    @JMTchongMbami 3 ปีที่แล้ว

    i'm sorry but i'm already lost at 39sec in the video, even and odd vectors? Did i miss some videos required to understand those concepts please?
    I like math as a hobby and i enjoy this channel because it's kinda advanced but this is a bit too much for me i have to confess :D

  • @samegawa_sharkskin
    @samegawa_sharkskin 3 ปีที่แล้ว +1

    100k subs!!! :D

  • @xiomarabeta9926
    @xiomarabeta9926 3 ปีที่แล้ว

    ¿Podrías activar los subtitulos en español?

    • @MichaelPennMath
      @MichaelPennMath  3 ปีที่แล้ว

      I think maybe because this is a new video they haven't been generated yet. Check back later?

  • @muckchorris9745
    @muckchorris9745 3 ปีที่แล้ว +1

    100k subscribers is a good place to stop.
    dont.

  • @michaelempeigne3519
    @michaelempeigne3519 3 ปีที่แล้ว

    Prove Cavalieri's Theorem

  • @mathadventuress
    @mathadventuress 3 ปีที่แล้ว

    100k!!!!!!!!!

  • @parameshwarhazra2725
    @parameshwarhazra2725 3 ปีที่แล้ว

    I just came here watching the word "heisenberg". As I am a Physics person.

  • @alial7022
    @alial7022 3 ปีที่แล้ว +1

    WALTER WHITE : hold my beeer ... !

  • @ИбадатЖұмабек
    @ИбадатЖұмабек 3 ปีที่แล้ว

    100k math olimpiad problems A ;G ; C ;N )))))))))))

  • @JSSTyger
    @JSSTyger 3 ปีที่แล้ว

    I took 10 courses in math in college...and have no dam clue what he is talking about.

  • @carly09et
    @carly09et 3 ปีที่แล้ว

    Lol this is measurement theory - Nice.