208 - Multiclass semantic segmentation using U-Net

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ม.ค. 2025

ความคิดเห็น • 227

  • @eli_m6556
    @eli_m6556 3 ปีที่แล้ว +11

    Needed this so much. Seems like every time I run into a problem with my research you put out a video answering my prayers. Thanks Sreeni.

  • @awaisahmad5908
    @awaisahmad5908 2 ปีที่แล้ว +3

    One of the best channels for Research Students of Computer Vision discipline.

  • @kaihsiangju
    @kaihsiangju 3 ปีที่แล้ว +63

    This channel deserves millions of subscribers. Thanks for the amazing contents.

    • @raguramramamoorthy8569
      @raguramramamoorthy8569 2 ปีที่แล้ว +2

      true very true --- he can sell this course for at least 100 dollars ...but he has done it for free ...

    • @gadaanet
      @gadaanet 2 ปีที่แล้ว +1

      Exactly!

  • @5junkmail
    @5junkmail 2 ปีที่แล้ว +6

    Exactly what I was looking for, you are a very knowledgeable person with a great talent for explaining things!!! Please don't stop!

  • @hadim.4125
    @hadim.4125 หลายเดือนก่อน

    Thank you so much! I was stock at my model and I couldn't figure out y for weeks! Thanks to u and ur straightforward videos, I fixed the problem!

  • @kannanv9304
    @kannanv9304 3 ปีที่แล้ว

    Ajarn - Can fully understand the efforts and time you are putting in to create these contents.......The real value of gold is not known to the one who wears it......It is know to the miners who take out tons and tons of slush to extract 1 ounz of gold........Pranams......You have an amazing sense of sequels.......And I am sure, you are not going to stop the sequels on U-nets with this.......

  • @vaveileinn8402
    @vaveileinn8402 3 ปีที่แล้ว +1

    The only word : Great! please keep continue Sir. thank you so much.

  • @jacobusstrydom7017
    @jacobusstrydom7017 3 ปีที่แล้ว +3

    Wow the best explain of these concepts I have seen in a long time. Thanks for this

  • @jk47nitk
    @jk47nitk 8 หลายเดือนก่อน

    Thanks for Multiclass segmentation. In Segmentation or even Image related Deep Learning your Videos are best.....

  • @suyashdahale4355
    @suyashdahale4355 8 หลายเดือนก่อน

    Thank you sreeni for the labelencoder path, all other places it was simply -1 , but my masks were in color and i just realised that differnce after wathing this tutorial..... super helpful insight.

  • @vimalshrivastava6586
    @vimalshrivastava6586 3 ปีที่แล้ว

    Best TH-cam channel for deep learning researchers.

  • @EUMikkel
    @EUMikkel ปีที่แล้ว

    Sreeni thank you so much for all the work you put into these videos. It has helped me so much get started with segmentation

  • @danialarab8013
    @danialarab8013 3 ปีที่แล้ว +3

    Hi Sreeni,
    Many thanks for the very useful materials. I tried your code and have the following question for you:
    When I tried to do the same as you did in the code, i.e., commenting the class_weight=class_weights, I cannot get a reduction in the loss at all! And when I tried to execute class_weight=class_weights, I am getting "ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()". Can you please give me some guidance? Appreciated.

    • @DigitalSreeni
      @DigitalSreeni  3 ปีที่แล้ว

      Is this on a different data set or same one I showed? If it is the same data set then the same code should work, please make sure you haven’t skipped any steps. Also, try different kernel initializers, optimizer and loss function.

    • @sudiptapaul2825
      @sudiptapaul2825 2 ปีที่แล้ว

      class_weight=class_weights is NOT working either on the given dataset or any other type of dataset. Can you kindly give us any suggestions?

  • @kavithashagadevan7698
    @kavithashagadevan7698 3 ปีที่แล้ว +1

    Thank you. Your tutorials are life savers for me

  • @gadaanet
    @gadaanet 2 ปีที่แล้ว

    I've just found what I was looking for.
    Thank you!

  • @sivateja3975
    @sivateja3975 ปีที่แล้ว

    Thank you for your tutorials and lectures.

  • @bikkikumarsha
    @bikkikumarsha 3 ปีที่แล้ว +1

    Thank you, your tutorials are one of the best.

  • @subratabhattacharjee992
    @subratabhattacharjee992 3 ปีที่แล้ว +2

    Thank you for your tutorial. I would like to request an open-slide tutorial for generating patches from the whole-slide images. This is very important for the analysis of histopathology images.

    • @mqfk3151985
      @mqfk3151985 3 ปีที่แล้ว

      he did already, follow this link:
      th-cam.com/video/7IL7LKSLb9I/w-d-xo.html

  • @applejuice5785
    @applejuice5785 3 ปีที่แล้ว +2

    thanks I was just working on a multiclass segmentation with Unet

  • @angelopiasentin4197
    @angelopiasentin4197 3 ปีที่แล้ว

    Thanks Sreeni. You always bring new ideas to the AI world.

  • @ankitmars
    @ankitmars 2 ปีที่แล้ว +1

    Hi Sreeni, Thanks for great video. How does one generate multiclass masks from already annotated images

    • @xxxtj3679
      @xxxtj3679 2 ปีที่แล้ว

      i would also like to know.

  • @hassanmahmood7284
    @hassanmahmood7284 3 ปีที่แล้ว +1

    thanks for the contribution, appreciated.

  • @aimen__
    @aimen__ 2 ปีที่แล้ว +1

    i wish you showed how to use focal loss

  • @davidhresko7351
    @davidhresko7351 3 ปีที่แล้ว

    Finally video explained to details. Thanks

  • @skynetpro549
    @skynetpro549 3 ปีที่แล้ว

    this channel is love !! supported me a lot

  • @soumyadrip
    @soumyadrip 3 ปีที่แล้ว +4

    I needed this.

  • @frankrobert9199
    @frankrobert9199 3 ปีที่แล้ว

    Great lectures, I follow up with your series.

  • @DrRubidium
    @DrRubidium 3 ปีที่แล้ว +1

    I am a simple man. I see your new video I press like!

  • @Stats0654
    @Stats0654 2 ปีที่แล้ว

    Thank you soo much, i was looking for the exact same stuff and this single video helped me alot.

    • @DigitalSreeni
      @DigitalSreeni  2 ปีที่แล้ว +1

      Glad it helped

    • @Stats0654
      @Stats0654 2 ปีที่แล้ว

      Hi Sreeni, I have just a small doubt, is it really a multiclass problem? or is it a multilabel? because as per the definition given in video "140 - What in the world is regression, multi-label, multi-class and binary classification?" for me it's more likely a multilabel problem, or am I getting it wrong? Thanks in advance!

  • @Ninguempensonesse
    @Ninguempensonesse 2 ปีที่แล้ว

    Amazing content my and of many professor of Deep Learning, I think that a nice suggestion to your next videos, could be the addition of the version of the installed libraries and modules in each notebook.
    That´s it thanks.

  • @Divya-ok1ou
    @Divya-ok1ou 2 ปีที่แล้ว

    Thank you for your videos. They are very much helpful.

  • @ashutoshbhushan7384
    @ashutoshbhushan7384 3 ปีที่แล้ว

    Thanks for the free content through your channel!

  • @salarghaffarian4914
    @salarghaffarian4914 3 ปีที่แล้ว +5

    Your U-net videos are very helpful for me.
    I would appreciate if you could produce videos on instance segmentation as well and particularly Mask RCNN model. Thanks a lot. 🙏🙏

  • @adhiliqbal6020
    @adhiliqbal6020 3 ปีที่แล้ว

    Great job srini, I'm learning alot

  • @unamattina6023
    @unamattina6023 2 ปีที่แล้ว +1

    hello, thank you for this great tutorial. I want to download the exactly dataset but in the given link there are a few images. What should I do?

  • @anandsrivastava5951
    @anandsrivastava5951 ปีที่แล้ว

    Great!! I was in need of it badly :) Great work. !!

  • @adeyinkaadejumobi5091
    @adeyinkaadejumobi5091 ปีที่แล้ว

    Thank you so much, this video is really helpful

  • @hadim.4125
    @hadim.4125 หลายเดือนก่อน

    Can you please tell us how I can use dice coefficient as the loss function for multiclass segmentation too?

  • @suspense_shorts
    @suspense_shorts 2 ปีที่แล้ว

    Thanks sir, for this wonderful tutorial. I wanted to know what is the software that you were using to view the masks?

  • @danielcohen5311
    @danielcohen5311 ปีที่แล้ว

    Thanks for the video it was very helpful!

  • @tushihahahi
    @tushihahahi 3 ปีที่แล้ว

    Fantastic Explanation. Thank You.

  • @nitheshr7000
    @nitheshr7000 ปีที่แล้ว

    Why patching the image is preferred rather than resizing in segementation ?

  • @alexandrustefan12345
    @alexandrustefan12345 ปีที่แล้ว

    Can you please name the tool you used for image analysis?

  • @victordiasteixeira1694
    @victordiasteixeira1694 2 ปีที่แล้ว

    This class helped me sooo much! Thanks a lot s2

  • @siqiwang7259
    @siqiwang7259 3 ปีที่แล้ว

    Thank you for the amazing tutorial!!

  • @fatemehmohseni5414
    @fatemehmohseni5414 11 วันที่ผ่านมา

    what if the dataset's images were not grayscale and had 3 channels? could you please help on how train that kind of dataset

  • @mohammadarafathuzzaman5442
    @mohammadarafathuzzaman5442 2 ปีที่แล้ว +1

    Amazing content. Can you please name the tool you used for image analysis? The one with which you checked number of class, histogram, changing contrast and so on.

  • @allishadow8134
    @allishadow8134 3 ปีที่แล้ว

    I like the way that you explain the concept... I will subscribe for future excellent content.... Thank you

  • @talha_anwar
    @talha_anwar 3 ปีที่แล้ว

    thanks, i am waiting for this and requested also

  • @rohinigaikar4117
    @rohinigaikar4117 3 ปีที่แล้ว

    Thank you so much. 👏👏👏

  • @themaryamsadeghi
    @themaryamsadeghi 3 ปีที่แล้ว

    Your videos are great, thank you!

  • @sujaybj7533
    @sujaybj7533 2 ปีที่แล้ว

    Sir, you are the best!!!!!
    Thank you!!

  • @parulianrenaldi7846
    @parulianrenaldi7846 2 ปีที่แล้ว

    can u explain how to make that mask dataset?

  • @anushkaagarwal8250
    @anushkaagarwal8250 3 ปีที่แล้ว

    Hey, is there a way we can get access to the trained weights?

  • @bogdanchelu5578
    @bogdanchelu5578 3 ปีที่แล้ว +2

    Thank you very much for your video, it helped a lot. Only thing I need to ask you about is the calculation of the IoU. I have a very unbalanced dataset, and I ran the model on it several times with several different loss functions, including some that are explicitly made to handle data unbalance, but every single time the IoU confusion matrix looks as if my model classified everything as background (i.e. the most common "class"). Since I'm sure the data is correctly labelled and I doubt there can be something wrong with the model especially after running it with different functions, I think there is something wrong with the IoU calculation. Do you have any idea? Thank you.

  • @geogob
    @geogob ปีที่แล้ว

    Thank you for the video. A question, 4 classes including background?

    • @DigitalSreeni
      @DigitalSreeni  ปีที่แล้ว +1

      In this example, there is nothing like background. If you have a background class then that can be assigned a value 0. The way I have written my code, the background would be the 5th class.

    • @geogob
      @geogob ปีที่แล้ว

      @@DigitalSreeni 👍.

  • @jiahongxie6884
    @jiahongxie6884 ปีที่แล้ว

    Thank you so much! How can I do multiclass instance segmentation in unet?

  • @NomanArif-n3u
    @NomanArif-n3u 19 วันที่ผ่านมา

    Do make a video on training the nnUnet and UNet with transformers using 3D dataset

  • @samuelireke238
    @samuelireke238 3 ปีที่แล้ว

    Thank you very much for your videos. They have been of immense help for a histopathology cell counting project I am working on. I am trying to investigate the impact of auxiliary outputs on UNets for microscopic cell detection and counting but have been stuck with a bug for over a week now. Most documentation online hasn't helped.
    My auxiliary outputs use various blocks of the UNet model as inputs as such output different shapes from the original input size of (256,256,3). So the main challenge is how to declare this during training so it takes this into consideration.
    Error Message obtained: ValueError: Error when checking target: expected aux1 to have shape (32, 32, 1) but got an array with shape (256, 256, 1)
    Model Summary:
    Layer (type) Output Shape Param # Connected to
    ==================================================================================================
    input_6 (InputLayer) (None, 256, 256, 3) 0
    __________________________________________________________________________________________________
    ...
    __________________________________________________________________________________________________
    aux1 (Conv2D) (None, 32, 32, 1) 33 activation_74[0][0]
    __________________________________________________________________________________________________
    aux2 (Conv2D) (None, 64, 64, 1) 33 activation_76[0][0]
    __________________________________________________________________________________________________
    aux3 (Conv2D) (None, 128, 128, 1) 33 activation_78[0][0]
    __________________________________________________________________________________________________
    original (Conv2D) (None, 256, 256, 1) 33 activation_72[0][0]

  • @fuegopuro5933
    @fuegopuro5933 3 ปีที่แล้ว

    Wow, do you plan to roll out tutorials on lits?

  • @MrRynRules
    @MrRynRules 2 ปีที่แล้ว

    Thank you for your content!

  • @anishachakravorty1395
    @anishachakravorty1395 2 ปีที่แล้ว +1

    Sir thank you for the video. Can you please help me with this error i am getting with compute class weight.
    It says compute class weight() takes 1 positional argument but 3 were given.

    • @DigitalSreeni
      @DigitalSreeni  2 ปีที่แล้ว

      May be this video helps: th-cam.com/video/QntLBvUZR5c/w-d-xo.html

  • @naimsassine
    @naimsassine 3 ปีที่แล้ว

    Thank you so much, this video is amazing

  • @mr.shouvikdey8482
    @mr.shouvikdey8482 3 ปีที่แล้ว

    class_weight in .fit is not working it says "`class_weight` not supported for 3+ dimensional targets".

  • @connielee4359
    @connielee4359 3 ปีที่แล้ว +1

    Did you occur the error of " 'class_weight' not support for 3+ dimensional targets " when using class_weight?

    • @DigitalSreeni
      @DigitalSreeni  3 ปีที่แล้ว +1

      Yes. For multiclass I recommend dice loss where you supply class weights or use focal loss that works well without providing class weights.

    • @connielee4359
      @connielee4359 3 ปีที่แล้ว

      @@DigitalSreeni Thanks for your reply.

    • @matancadeporco
      @matancadeporco 3 ปีที่แล้ว

      @@connielee4359 have u solve this? i'm stuck on this

    • @connielee4359
      @connielee4359 3 ปีที่แล้ว

      @@matancadeporco I didn't solve this problem;however, I use a loss function named "weighted categorical_crossentropy" instead. Hope you find this information helpful.

  • @sebastianandrescajasordone8501
    @sebastianandrescajasordone8501 3 ปีที่แล้ว

    Why hot-encoding is used here? What is the performance difference between this and having normal interger number's?

  • @ashwinigavali3316
    @ashwinigavali3316 7 หลายเดือนก่อน

    Amazing explanation

  • @pedroribeirossb
    @pedroribeirossb 3 ปีที่แล้ว +2

    Thank you for the great work! I have one question. Is the number of classes related to the number of colours/categories presented in the masks? If so, that means that in your case it's 4 but it could have been 5 or 20? Do we need to change the code in any way if the number of classes gets too much? Seems I'm having 224....Thank you in advance.

    • @mrziddiladka
      @mrziddiladka 3 ปีที่แล้ว

      yes depending on color number of classes depends.Yes it could be anything depending on labels 5 or 20.
      if number of classes is more the model should be robust no need to change the model attempt it and explore
      if you are having 224 give input shape 224*224*n_channels

  • @josephmargaryan
    @josephmargaryan ปีที่แล้ว

    What if a computer scientist gets handed images and is asked to develop a semantic segmentation model but doesn't have the masks for the images, just the images?

  • @زهراءطلالعبدالمختار-هندسةالحاس

    how can detrmine the number of class if i used UCF data set

  • @tarasankarbanerjee
    @tarasankarbanerjee 3 ปีที่แล้ว

    Awesome!! Thank you so much...

  • @ameyparanjape3292
    @ameyparanjape3292 3 ปีที่แล้ว

    Thanks Sreeni, this is great!

  • @orlyenriqueapoloapolo7002
    @orlyenriqueapoloapolo7002 2 ปีที่แล้ว

    Great videos. You are working with images which do not have more than 3 channels (3 bands). Do you think is possible use these models with images with more than 3 channels? I'm telling this because I'm working with hyperspectral images.

    • @DigitalSreeni
      @DigitalSreeni  2 ปีที่แล้ว

      Yes, of course. I've covered multichannel images in a few other videos, for example search for BraTS videos on my channel. Here is the first one in that series: th-cam.com/video/0Rpbhfav7tE/w-d-xo.html

    • @orlyenriqueapoloapolo7002
      @orlyenriqueapoloapolo7002 2 ปีที่แล้ว

      @@DigitalSreeni Thank you so much.

  • @MarcoCortex
    @MarcoCortex 3 ปีที่แล้ว

    thanks, Sreeni. Was the original training image carefully segmented in APEER by an expert? or is that job also done with Machine Learning? What is the weight of the EM images you are working with (100MB, 1GB, 10GB, 100GB)? I will follow your channel more closely :)! What kind of filter operations can we do in APEER platform for creating the feature maps to improve segmentation? I ask this final question thinking on QuPath (DoG, LoG, Structure and Hessian filters). Thanks in advance for your answer.

  • @alexzambrano5972
    @alexzambrano5972 2 ปีที่แล้ว

    I have watched your videos several times to get my master's thesis right. I have a question, how can I pass the weight information from SegSem to a GAN?

  • @amirsohail2143
    @amirsohail2143 2 ปีที่แล้ว +1

    thank you sir your lectures are very helpful. i have been stuck in class weight problems i have tried different methods but still got error. please help me out in this. how could possibly i do it. i have also tried focal loss but no benefit. i get 3D+ dimension error

  • @soumi7356
    @soumi7356 3 ปีที่แล้ว

    How are the different classes (labels) for the classes of images specified? Is there a specific directory structure for that?

  • @asmabenbrahem6
    @asmabenbrahem6 3 ปีที่แล้ว +1

    If I use the iou loss and iou as metric do I have to do class_weighting ? I know that for semantic segmentation the accuracy and the crossentropy loss are not the right ones to use because of the unbalanced data but I use the iou loss and iou metric do I have to use class weighting ?

  • @ayushchouhan5120
    @ayushchouhan5120 2 ปีที่แล้ว

    Sir we r using same data for validation as well as same data for testing “x_test”,”y_test_cat”

  • @niladrichakraborti5443
    @niladrichakraborti5443 ปีที่แล้ว

    Excellent explanation !!

  • @diegostaubfelipe4310
    @diegostaubfelipe4310 3 ปีที่แล้ว +1

    I had this problem with the class_weight -> ValueError: `class_weight` not supported for 3+ dimensional targets. Do you have any suggestions to solve it?

  • @reayagrewal3476
    @reayagrewal3476 ปีที่แล้ว

    please help me implement this unet on hyperspectral images

  • @Flyforward226
    @Flyforward226 2 ปีที่แล้ว

    Thank you very much! One question, I can only see 2 images under the folder 128_patches. did I miss anything here?

  • @yjoliiyki706
    @yjoliiyki706 3 ปีที่แล้ว

    could you upload a mask RCNN for the instance image segmentation?

  • @rs9130
    @rs9130 3 ปีที่แล้ว

    hello,
    why the sgd optimizer gives bad result. it can predict only 3 classes while adam can predict all class
    thank you

  • @pheiroijamprishika6414
    @pheiroijamprishika6414 3 ปีที่แล้ว

    Can you help get ground truth i.e mask image from a raw CXR image for segmentation using Unet..

  • @lucaskugler4083
    @lucaskugler4083 3 ปีที่แล้ว

    thanks a lot for your work!

  • @talha_anwar
    @talha_anwar 3 ปีที่แล้ว

    There is one thing, i am not sure about , why you load all data in ram first instead of using data loader

  • @ivanbellan1467
    @ivanbellan1467 ปีที่แล้ว

    Your videos are wonderful.
    I had a problem on the line 88. It said "class_weights = class_weight.compute_class_weight('balanced',
    np.unique(train_masks_reshaped_encoded),
    train_masks_reshaped_encoded)
    *** TypeError: compute_class_weight() takes 1 positional argument but 3 were given"
    Could you help me?

  • @ricardomartinez9895
    @ricardomartinez9895 2 ปีที่แล้ว

    Hello! TH-cam recommended me this video so I started with this one, but I can see that you have more than 208 ! I have one question, maybe there is a video where you explain this. If so, please recommend me that video.
    If keras works with jpg or png, is it possible to work with .tiff with reflectance units (0-1) ?
    Thank you so much.

  • @DQu-tm2qn
    @DQu-tm2qn 2 ปีที่แล้ว

    Could you do a video about predicting continuous variable using Unet? Thanks!

  • @mqfk3151985
    @mqfk3151985 3 ปีที่แล้ว +4

    As usual, your videos make life very easy for researchers.
    I have a question regarding class weights, when I uncommented the class_weight part in the model fitting, it returned an error that class_weights has to be a dictionary, something like this (on my own dataset):
    Class weights are...: {0: 0.4280686779466047,
    1: 1.54654951724371,
    2: 0.40951813587110275,
    3: 42.324187597545105,
    4: 1.5749410555965808,
    5: 2.2925788973162344,
    6: 2.080430679675916}
    even upon changing the class_weights into a dictionary, I faced another issue:
    `class_weight` not supported for 3+ dimensional targets
    meaning that my y_test_cat is a 3-D matrix which is not supported for class_weights. References suggested to use "sample weights" instead of class_weights
    any suggestions on how to solve this issue?
    Again, Many thanks for your amazing videos.

    • @finlyk
      @finlyk 3 ปีที่แล้ว +2

      Hi, I face the same problem, did you manage to solve it ? :)

    • @mqfk3151985
      @mqfk3151985 3 ปีที่แล้ว +2

      @@finlyk not yet, I was hoping to get some answer. I may end up trying to solve it myself

    • @finlyk
      @finlyk 3 ปีที่แล้ว +2

      @@mqfk3151985 after some research, it seems that you cannot apply weight to 2D array. The model output is (height, width, number of class), and should be flatten as (height * width, number of class) for the weights to be applied. Will try that tomorrow and tell you if it helps

    • @finlyk
      @finlyk 3 ปีที่แล้ว +2

      I didn't managed to fix it unfortunately.. would appreciate any help if you try to handle the issue :)

    • @matancadeporco
      @matancadeporco 3 ปีที่แล้ว +1

      does anyone solve this problem? i'm stuck here

  • @vaveileinn8402
    @vaveileinn8402 3 ปีที่แล้ว

    Where can I find and download the dataset? Is this available for public/students

  • @ajinkyadeshpande4812
    @ajinkyadeshpande4812 2 ปีที่แล้ว

    Where can i get a video that explains datasets - I) Kidney (RCC) (II) Triple Negative
    Breast Cancer (TNBC) (III) MoNuSeg-2018 and many other nuclei segmentation datasets ?

  • @pedromartinezbarron4720
    @pedromartinezbarron4720 ปีที่แล้ว

    Using imageJ, how can I save my semantic labels in only one mask? Like in this vide where you get a single mask but represented with diferrent gray-scale levels

  • @AmitChaudhary-qx5mc
    @AmitChaudhary-qx5mc 3 ปีที่แล้ว

    i think os.join is reduntant here, please correct me if i wrong.

  • @yogipaleka2702
    @yogipaleka2702 2 ปีที่แล้ว

    Terimakasih banyak sir

    • @DigitalSreeni
      @DigitalSreeni  2 ปีที่แล้ว

      Had to translate to find out what that means, apparently Thank you in Indonesian. Thank you too for watching the video, I hope you found it to be useful and educational.

  • @dr.aolsharon4733
    @dr.aolsharon4733 3 ปีที่แล้ว +1

    Thanks for the great content. However, I noticed that class_weight does not work for multiclass segmentation. It keeps throwing an error when I run the script you shared. Could there be a solution for this?

    • @DigitalSreeni
      @DigitalSreeni  3 ปีที่แล้ว +2

      I did not test class_weight for multiclass. In fact, I recommend using focal loss for multiclass. You can also use a combination of focal loss and dice loss and for dice you can provide class weights. This is probably the easiest way to handle this. In general, focal loss did a great job for my datasets with multiple classes.

  • @umeshpathak825
    @umeshpathak825 3 ปีที่แล้ว

    Sir how to segment medical images like retinal image

  • @1UniverseGames
    @1UniverseGames 3 ปีที่แล้ว

    Nice class sir. SIr, Can you please make some videos like how to read a scientific research paper and how we can get their results by performing our own code or reading that articles. It will really help many of us.