How Richard Feynman would evaluate this monster log integral

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 ก.ย. 2024

ความคิดเห็น • 342

  • @maths_505
    @maths_505  ปีที่แล้ว +70

    At the 20:25 mark I forgot the modulus operator on the the argument of the natural logarithm. However, it didn't affect the solution as we end up multiplying complex conjugates anyway. However, I should not have omitted it as it leaves a hole in the solution development.
    The modulus operator will remain and on adding I(i) and I(-i) the moduli of two complex conjugate numbers will be multiplied (due to the logarithms) giving us exactly the same result.

    • @danielkanewske8473
      @danielkanewske8473 ปีที่แล้ว +5

      I believe that your trig sub was overly complicated. Because you are in the complex plane, you can reduce as follows (1 - t^0.5) / (1-t) = 1 / (1 + t^0.5) and then solve your integral with the much simpler u sub u = 1 + t^0.5.

    • @maths_505
      @maths_505  ปีที่แล้ว +3

      @@danielkanewske8473 yes I agree

    • @antoniomora1621
      @antoniomora1621 ปีที่แล้ว

      ​@@maths_505 At 20:25, where you are referencing, I noticed that the | sqrt(i)+1 | and | sqrt(-i)+1 | terms each can change depending on which root of i or -i you take. If you were to calculate each term separately, and then multiply them, rather than combing the term into a single expression then foiling, you could get a wrong answer if you take the wrong root of i or -i. what is the reason for this?

    • @pabloarmenteros
      @pabloarmenteros ปีที่แล้ว +1

      yo creo que te podemos perdonar jeje...

    • @joeboxter3635
      @joeboxter3635 ปีที่แล้ว

      How is this over powered?

  • @TimothyOBrien6
    @TimothyOBrien6 ปีที่แล้ว +335

    This technique was developed by Leibniz, one of the inventors of calculus (whose notation we still use today). It's silly to call it the Feynman technique when the inventor of calculus used it.

    • @TheScreamingFedora
      @TheScreamingFedora ปีที่แล้ว +42

      He’s probably talking about how it’s the less common method of integration that Feynman was taught (and used to frequently solve complex integrals that gave others trouble). In “Surely You’re Joking” Feynman refers to it as “integrating under the curve” and explains how it is an example of why having a diverse “toolbox” of skills helps you approach problems differently and come to novel conclusions that other may have overlooked.
      Yes it’s not his method but I think Feynman gives it a nice story, whereas “Leibniz” method is just a bit dry and doesn’t have the same connotations.

    • @drillsargentadog
      @drillsargentadog ปีที่แล้ว +47

      @@TheScreamingFedora When possible we try to name things after their originators. We don't do a good job and there are tons of exceptions, but it just doesn't make sense to do so in this case just because of the Feynman fan club, since this technique is quite old and used to be pretty ubiquitous. Another bubble to burst: Julian Schwinger has as good of a contribution to QED as Feynman, but was a not a press-hungry "curious character". Feynman got all of popular coverage (which he actively sought out) and thus is more widely known, while Schwinger modestly curated a reputation as a master amongst serious researchers.

    • @damon1588
      @damon1588 ปีที่แล้ว +24

      If I'm not mistaking, in France we call it Leibniz' technique

    • @planomathandscience
      @planomathandscience ปีที่แล้ว +1

      @@drillsargentadog yet no one nowadays takes inspiration from him. So... who cares?

    • @lanog40
      @lanog40 ปีที่แล้ว +19

      @@planomathandscience you’re obviously not studying physics, so your opinion is likely not going to be shared by people that are studying it

  • @manstuckinabox3679
    @manstuckinabox3679 ปีที่แล้ว +251

    Deciding between contour and Feynman's is liek deciding between nuking and nuking harder...

    • @maths_505
      @maths_505  ปีที่แล้ว +15

      Its actually fun trying both
      Normally one can "sense" which technique would be more efficient and try that....and then there's this integral....so its actually pretty satisfying to solve it both ways and see which technique drops colder

    • @manstuckinabox3679
      @manstuckinabox3679 ปีที่แล้ว +12

      @@maths_505 Imma try it using contour integration, and see if we can use some techniques to make it simpler, WE MUST FIND A WAY TO NERF FEYNMANN'S TECHNIQUE! IT HAS GONE FAR ENOUGH!

    • @maths_505
      @maths_505  ปีที่แล้ว +12

      @@manstuckinabox3679 once you go Feynman....there ain't no turnin back!

    • @anthonymichael970
      @anthonymichael970 ปีที่แล้ว

      Jeez man. Relax

    • @vogelvogeltje
      @vogelvogeltje ปีที่แล้ว +1

      U liek mudkipz?

  • @ublade82
    @ublade82 ปีที่แล้ว +7

    Feynman's Technique: Knowing the answer to everything

  • @pablosarrosanchez460
    @pablosarrosanchez460 ปีที่แล้ว +54

    The antiderivatve in 14:58 can be done easier by noticing that (1-t) can be written as (1+sqrt(t))(1-sqrt(t)), and this last one cancels with the numerator, leaving us with the integral of dt/[sqrt(t)·(1+sqrt(t))]
    Now perform a substitution making u = sqrt(t), du=dt/2sqrt(t) => int of dt/[sqrt(t)·(1+sqrt(t))] = int of 2·du/(1+u) = 2·ln(1+u) + C = 2·ln(1+sqrt(t)) + C

  • @riadsouissi
    @riadsouissi ปีที่แล้ว +32

    I used log(x^4+t^4) instead to avoid dealing with complex values of t. Got the same value.

  • @violintegral
    @violintegral ปีที่แล้ว +69

    Nice solution! I mentioned a solution of mine using Feynman's trick and only real analytic methods in the comments of qncubed3's video. No complex numbers needed! Here it is: first, factor x^4 + 1 into (x^2 + sqrt(2)*x + 1)(x^2 - sqrt(2)*x + 1), then use log(ab) = log(a) + log(b) to split the integral into two separate, but very similar integrals. Under the substitution u = -x, it becomes clear that these two integrals are equivalent, leaving only one integral to solve. From there, you can use Feynman's trick to evaluate the integral of the parameterized function log(x^2 + tx + 1)/(x^2 + 1) w.r.t. x from -inf to inf, then evaluate I(sqrt(2)). After taking the partial derivative of the integrand w.r.t. t, what follows is just simple calculus integration techniques. To find the initial condition, set t = 0 in the parameterized integral, and employ the substitution x = tan(u). Here we run into the integral from 0 to pi/2 of log(cos(u))du, which is a famous integral, commonly solved using the symmetry of the integrand.

    • @maths_505
      @maths_505  ปีที่แล้ว +16

      That's absolutely amazing!!!
      I'll upload another video on this integral using Feynman's technique using your approach. Just let me know how to pronounce your name so I can properly credit it to you in the video.

    • @violintegral
      @violintegral ปีที่แล้ว +7

      @@maths_505 thank you so much! My username is a a blending of "violin" and "integral" since playing violin and math are my two favorite things. It's pronounced violin-tegral or equivalently viol-integral since the "in" in violin and integral are the same sound.

    • @violintegral
      @violintegral ปีที่แล้ว +3

      @@maths_505 also, have you attempted any of the 2022 MIT Integration Bee integrals? They are quite difficult and could make for some very interesting videos. I've only seen a few of them solved on other channels.

    • @maths_505
      @maths_505  ปีที่แล้ว +3

      I solved a few of the fun ones on the qualifying round but I haven't seen the integrals from the competition yet

    • @violintegral
      @violintegral ปีที่แล้ว +3

      @@maths_505 the quarterfinal round has some really nasty limits of integrals which I have yet to see any solutions for

  • @matthew.y
    @matthew.y ปีที่แล้ว +2

    I was eating dinner when I found this video. Now my dinner is cold, but I just found a new magical technique!

  • @ahmetleventtakr7625
    @ahmetleventtakr7625 ปีที่แล้ว +13

    Your channel is criminally underrated. I hope you’ll get the subscribers and views you deserve.
    By the way, amazing video as always. Kudos!

    • @NaN_000
      @NaN_000 ปีที่แล้ว +1

      criminally ? 💀

  • @amrendrasingh7140
    @amrendrasingh7140 ปีที่แล้ว +1

    The flow of the solution was awesome and stimulating. Good work kamaal 👌

  • @AnsisPlepis
    @AnsisPlepis ปีที่แล้ว +2

    this was incredibly satisfying to watch. awesome video!

  • @drstrangecoin6050
    @drstrangecoin6050 ปีที่แล้ว

    Put this channel in the teaching portion of your CV bro you've earned it.

  • @edcoad4930
    @edcoad4930 ปีที่แล้ว +1

    Gloriously pleasing. Chapeau!

  • @felixlucanus7922
    @felixlucanus7922 ปีที่แล้ว +11

    This just looks like a specific application of a more general approach called the Continuation Method (also sometimes invariant imbedding) to solving all sorts of problems, from root finding to nonlinear differential equations. Wasserstrom 1973 is a nice review of it. Didn't know about any attribution to Feynmen in its development. Very nice video!

    • @lolilollolilol7773
      @lolilollolilol7773 ปีที่แล้ว

      it's attributed to Leibnitz

    • @felixlucanus7922
      @felixlucanus7922 ปีที่แล้ว

      @@lolilollolilol7773 True, but Leibnitz's method also pertains only to integration and so it is also just a specific application of a much more general method.

  • @unidentifieduser5346
    @unidentifieduser5346 ปีที่แล้ว +1

    I love how this piece went from very easy to hard to harder to almost impossible

  • @DominicProMax
    @DominicProMax ปีที่แล้ว +5

    I kept thinking you were done but you simplified it even further 😂

  • @DaveJ6515
    @DaveJ6515 ปีที่แล้ว +2

    Cool! Enjoyed it from start to finish

  • @nicogehren6566
    @nicogehren6566 ปีที่แล้ว +1

    beautiful solution. keep rocking the integrals.

  • @psychedelictranscendental811
    @psychedelictranscendental811 ปีที่แล้ว +10

    My favourite part is when he said binomial expansion time and binomial expansioned all over the place. Truly, one of the maths of all time.

  • @ElliotUnbound
    @ElliotUnbound ปีที่แล้ว +20

    An interesting thing I found is if you do this same integral with ln(x^2+1) instead of ln(x^4+1) you get 2pi*ln2, meaning there's probably some sort of general formula for integrals like this

    • @daddy_myers
      @daddy_myers ปีที่แล้ว +8

      I believe you can derive a formula for integrals of the form ln(x^n +1)/(x^2+1) through the use of complex analysis, namely contour integration. Might be difficult, as you'll have as many of what are known as branch cuts as your power of n, which may be a bit of a pain to go through (since you'll have to compute I believe around 6+4n integrals, that's a rough estimate. However, most of them go to zero anyway), but I believe it's doable.

    • @samssams1619
      @samssams1619 ปีที่แล้ว +1

      Sounds like residue theorem to me as there u always have 2pi*i * res(z)

  • @seegeeaye
    @seegeeaye ปีที่แล้ว +5

    follow your explanation is like to listen to a detective story, great!

  • @sorooshusa
    @sorooshusa ปีที่แล้ว +3

    I got my BS in mathematics and just wanted to say be proud of your knowledge of mathematics. To me, this is well above and beyond other scientific fields. I truly believe that there is such thing as math brain and not everyone finds this stuff prideful or interesting. The few that do are the ones that are carrying the progress of the future. Fascinating stuff.

  • @ihatethesensors
    @ihatethesensors ปีที่แล้ว +94

    That was awesome! When you brought up complex numbers, I knew where this was going. I love it when you can step into the world of imaginary numbers only as a means of getting back to a real solution - stepping back into real numbers. It's like playing off-board chess. You can jump off the board briefly -- as long as you jump right back onto the board. That's how I envision it anyways. Cheers! Great video!

    • @maths_505
      @maths_505  ปีที่แล้ว +10

      The solution actually assumed implicitly that t was a pure imaginary number. All the calculations performed are valid for complex numbers so we basically never left

  • @bjrnleonsrenriedel8585
    @bjrnleonsrenriedel8585 ปีที่แล้ว

    The solution is so beatiful😮

  • @wilurbean
    @wilurbean ปีที่แล้ว +1

    Prof Fred Adams, "If you use it once its a trick, if you use it twice its a technique"

  • @alanrodriguez9365
    @alanrodriguez9365 ปีที่แล้ว

    Wow, thank you for the fun ride!

  • @bardistass
    @bardistass ปีที่แล้ว +1

    Video: "We can try solving this integral with the Feyman technique"
    Me, sat on the sofa eating chips and having no idea what that means: "....Go on"

  • @paarths.5281
    @paarths.5281 ปีที่แล้ว +4

    Actually you can also just figure it out by knowing what ln(sin(x)) integrated over (0, pi/2] is
    Edit: I wrote all real numbers instead of (0, pi/2] by mistake

  • @aerialwinston9932
    @aerialwinston9932 ปีที่แล้ว

    Cheery cheery cheery color, and voice is a service

  • @twistedcubic
    @twistedcubic ปีที่แล้ว +1

    The Residue Theorem is clearly more overpowered, since you brought up complex numbers.

  • @JohnSmith-cg3cv
    @JohnSmith-cg3cv ปีที่แล้ว

    The thumbnail is like “if Feynman was a Platinum-record selling rapper”…. Lmaooo

    • @maths_505
      @maths_505  ปีที่แล้ว

      I'm pretty sure Feynman would treat every video on this technique as a diss track towards contour integration 😂

  • @newplayer3259
    @newplayer3259 ปีที่แล้ว

    integral at 15:24 can be done by substituting sqrt(t) as u after simplifying by canceling the 1-sqrt(t).

  • @geraltofrivia9424
    @geraltofrivia9424 ปีที่แล้ว +1

    Beautiful

  • @daddy_myers
    @daddy_myers ปีที่แล้ว +181

    I personally found that most problems with complex numbers involved often end up being a massive algebraic extravaganza in order to simplify at the end. It's not the most exciting thing in the world to go through that process, but you end up with a beautiful answer afterwards, which is the only hope we have before delving right into simplifying!
    Given how many contour integrals I've done recently, I can only say that π is following me around like no other before. It's everywhere!!! I'm starting to think that most Calculus problems I've solved had π in them because whoever developed the Math behind the concepts just sneakily hard-wired it in!!
    It's a little conspiracy that has proven itself to me time and time again. But until we find the culprit, let's just all enjoy the Math. 😂😂

    • @manstuckinabox3679
      @manstuckinabox3679 ปีที่แล้ว

      It's those sneaky egyptians! we knew they went irrelevent after the dawn of the 1st century...

    • @osamaattallah6956
      @osamaattallah6956 ปีที่แล้ว +11

      This reads like a bot wrote this, surpirsed about complex numbers and pi lol

    • @urosmarjanovic663
      @urosmarjanovic663 ปีที่แล้ว +6

      @@osamaattallah6956 What is next, that pesky "e" number? Incredible!!!

    • @bubbazanetti4577
      @bubbazanetti4577 ปีที่แล้ว +2

      @@urosmarjanovic663 That damned Oily Macaroni Constant that likes to jump scare at random times. 0.577215664901532860606512090...
      WTF is that all about???

    • @SiphonSoulsX
      @SiphonSoulsX ปีที่แล้ว +4

      As a rule of thumb, when you see that there is a lot of simplification right before the answer, it usually means that there was a faster way to do that.
      In this case, I'(t) could be integrated (with respect to t) in a much shorter way by substituting t=u^2, while the last part could have been faster without recurring to the Euler's formula (simply multiplying the complex exponentials).

  • @nablahnjr.6728
    @nablahnjr.6728 ปีที่แล้ว

    nothing is more overpowered than guessing the solution

  • @hadikareem2335
    @hadikareem2335 ปีที่แล้ว +4

    Can you show us an example of Feynman's technique solving fractional derivative of a spherical special function such as the Bessel function?

  • @Spielzeit85
    @Spielzeit85 ปีที่แล้ว

    I haven't looked at integrals since calc 2 in college almost 15 years ago so i don't understand anything beyond the first 2 minutes but the final answer is truly elegant

  • @nathanmenezes7914
    @nathanmenezes7914 7 หลายเดือนก่อน

    For the trig sub, a much easier solution is to see that (1-sqrt(t))/(1-t) = 1/(1+sqrt(t)) and then sub u=1+sqrt(t).

  • @ryangosling239
    @ryangosling239 ปีที่แล้ว +1

    On 15:41, if t equals to sin^2 φ, then sin φ =+-√t. To avoid this, you could have defined sin φ as t in the first place

  • @CameronTacklind
    @CameronTacklind ปีที่แล้ว +2

    I loved watching this tour de force.
    However, I found myself wondering, what was Feynman's technique? What was special or different about it? I heard some discussion about other techniques at the beginning but I'm still not getting what makes this unique or special.

  • @xxthelinkxx3296
    @xxthelinkxx3296 ปีที่แล้ว

    My brain combusted everytime he used "easy" in any form to describe a step he just completed

  • @Aryan-ut7rl
    @Aryan-ut7rl ปีที่แล้ว +3

    14:58 this could have been done easily if you factorise the 1-t into (1+sqrt(t))(1-sqrt(t))
    Then integral become 1/sqrt(t)(1+sqrt(t)
    This can be easily solved by putting 1+sqrt(t) as u

  • @rajendramisir3530
    @rajendramisir3530 ปีที่แล้ว +24

    Just amazing and rigorous! I like how you used complex analysis, Euler’s formula and trigonometric substitution to arrive at the result. Thanks for sharing your knowledge and skills. I find it interesting how the argument of ln is the irrational constant pi. It seems e is the shadow of pi. Pi and e are transcendental numbers.

  • @schizoframia4874
    @schizoframia4874 ปีที่แล้ว +2

    Why is there a parental advisory sticker😂

    • @maths_505
      @maths_505  ปีที่แล้ว +2

      Why not😂😂😂

  • @Fictionarious
    @Fictionarious ปีที่แล้ว +1

    To think that I once thought long division was complicated

  • @wolfgangreichl3361
    @wolfgangreichl3361 ปีที่แล้ว

    I had flashbacks to QM2 - not PTSD quality but slightly stressful. We effed around with this stuff for half a year non-stop.
    I managed to do most of the exercises - and in the end I had developed a perverse liking to it - but lots of trees lost theirs lives in the process.

  • @JYT256
    @JYT256 ปีที่แล้ว +1

    lost my shit laughing when you pulled the pi into the exponent

  • @JamesJoyce12
    @JamesJoyce12 ปีที่แล้ว

    Some of us would argue it is the Risch algorithm.

  • @procerpat9223
    @procerpat9223 ปีที่แล้ว +1

    Very entertaining delivery! I would enjoy watching you solve this using contours.

    • @maths_505
      @maths_505  ปีที่แล้ว +1

      But I wouldn't enjoy solving it😂
      Check out qncubed3. He solved it using complex analysis

  • @holyshit922
    @holyshit922 ปีที่แล้ว +1

    Integrand is even so we can integrate it only from 0..infinity and double the result
    ln(x^4+1) = Int(4x^4t^3/((xt)^4+1),t=0..1)
    so we have
    Int(1/(x^2+1)*Int(4x^4t^3/(x^4t^4+1),t=0..1),x=0..infinity)
    Int(Int(4x^4t^3/((x^2+1)(x^4t^4+1)),x=0..infinity),t=0..1)
    Is it correct or we may choose better our parameter
    As we can see this approach is similar to the Leibnitz's differentiation under integral sign
    Int(4x^4t^3/((x^2+1)(x^4t^4+1)),x=0..infinity)
    u=xt
    du=tdx
    dx=dt/t
    Int(4u^4/t*1/((u^2/t^2+1)(u^4+1))*1/t,u=0..infinity) , t>0
    Int(4u^4*1/(t^2(u^2/t^2+1)(u^4+1)),u=0..infinity)
    Int(4u^4/((u^2+t^2)(u^4+1)),u=0..infinity)
    Int(4(u^4+1-1)/((u^2+t^2)(u^4+1)),u=0..infinity)
    4Int(1/(u^2+t^2),u=0..infinity)-4Int(1/((u^2+t^2)(u^4+1)),u=0..infinity)
    (u^4+1) - (u^2 + t^2)(u^2 - t^2) = (u^4+1) - (u^4 - t^4)
    (u^4+1) - (u^2 + t^2)(u^2 - t^2) = 1+t^4
    4Int(1/(u^2+t^2),u=0..infinity)-4/(1+t^4)Int(((u^4+1) - (u^2 + t^2)(u^2 - t^2))/((u^2+t^2)(u^4+1)),u=0..infinity)
    4Int(1/(u^2+t^2),u=0..infinity)-4/(1+t^4)Int(1/(u^2+t^2),u=0..infinity)+4/(1+t^4)Int((u^2-t^2)/(u^4+1),u=0..infinity)
    (4 - 4/(1+t^4))Int(1/(u^2+t^2),u=0..infinity)+4/(1+t^4)Int((u^2-t^2)/(u^4+1),u=0..infinity)
    4t^4/(1+t^4)Int(1/(u^2+t^2),u=0..infinity) + 4/(1+t^4)Int(u^2/(u^4+1),u=0..infinity)-4t^2/(1+t^4)Int(1/(u^4+1),u=0..infinity)
    4t^3/(1+t^4)Int(1/t*1/(1+(u/t)^2),u=0..infinity) + 4/(1+t^4)Int(u^2/(u^4+1),u=0..infinity)-4t^2/(1+t^4)Int(1/(u^4+1),u=0..infinity)
    Int(u^2/(u^4+1),u=0..infinity)
    u=1/w
    du = -1/w^2dw
    Int(1/w^2/(1/w^4+1)(-1/w^2),w=infinity..0)
    Int(1/w^2/(1/w^2+w^2),w=0..infinity)
    Int(1/(1+w^4),w=0..infinity)
    Int(u^2/(u^4+1),u=0..infinity) = Int(1/(1+w^4),w=0..infinity)
    4t^3/(1+t^4)Int(1/t*1/(1+(u/t)^2),u=0..infinity) + 4(1-t^2)/(1+t^4)Int(u^2/(u^4+1),u=0..infinity)
    Int(u^2/(u^4+1),u=0..infinity) = 1/2Int((1+u^2)/(u^4+1),u=0..infinity)
    1/2Int((1+1/u^2)/(u^2+1/u^2),u=0..infinity)
    1/2Int((1+1/u^2)/((u-1/u)^2+2),u=0..infinity)
    u-1/u = sqrt(2)y
    (1+1/u^2)du= sqrt(2)dy
    sqrt(2)/2Int(1/(2y^2+2),y=-infinity..infinity)
    sqrt(2)/4Int(1/(y^2+1),y=-infinity..infinity)
    sqrt(2)/4π
    4t^3/(1+t^4)*π/2+4sqrt(2)/4π(1-t^2)/(1+t^4)
    2πt^3/(1+t^4)+sqrt(2)π(1-t^2)/(1+t^4)
    π/2Int(4t^3/(1+t^4),t=0..1) - sqrt(2)πInt((t^2-1)/(t^4+1),t=0..1)
    π/2Int(4t^3/(1+t^4),t=0..1) - sqrt(2)πInt((1-1/t^2)/(t^2-1/t^2),t=0..1)
    π/2ln(1+t^4)|_{0}^{1} - sqrt(2)πInt((1-1/t^2)/((t+1/t)^2-2),t=0..1)
    π/2ln(2) - sqrt(2)πInt((1-1/t^2)/((t+1/t)^2-2),t=0..1)
    t+1/t=sqrt(2)y
    (1-1/t^2)dt=sqrt(2)dy
    π/2ln(2) - 2πInt(1/(2y^2-2),y=infinity..sqrt(2))
    π/2ln(2)+ πInt(1/(y^2-1),y=sqrt(2)..infinity)
    π/2ln(2)+ π/2Int(2/(y^2-1),y=sqrt(2)..infinity)
    π/2ln(2)+ π/2Int(((y+1)-(y-1))/((y-1)(y+1)),y=sqrt(2)..infinity)
    π/2ln(2)+ π/2(Int(1/(y-1),y=sqrt(2)..infinity)-Int(1/(y+1),y=sqrt(2)..infinity))
    π/2ln(2)+ π/2ln((y-1)/(y+1))|_{sqrt(2)}^{infinity}
    π/2ln(2)+ π/2(0-ln((sqrt(2)-1)/(sqrt(2)+1)))
    π/2ln(2) - π/2ln((sqrt(2)-1)/(sqrt(2)+1))
    π/2ln(2(sqrt(2)+1)/(sqrt(2)-1))
    π/2ln(2(sqrt(2)+1)^2)
    π/2ln(2(3+2sqrt(2)))
    π/2ln(6+4sqrt(2))
    Int(ln(x^4+1)/(x^2+1),x=-infinity..infinity) = π ln(6+4sqrt(2))
    Int(ln(x^4+1)/(x^2+1),x=-infinity..infinity) = π ln(4+2*2*sqrt(2)+2)
    Int(ln(x^4+1)/(x^2+1),x=-infinity..infinity) = π ln((2+sqrt(2))^2)
    Int(ln(x^4+1)/(x^2+1),x=-infinity..infinity) = 2π ln(2+sqrt(2))

    • @tzebengng9722
      @tzebengng9722 ปีที่แล้ว

      Great work, much appreciated. No complex function used. The use of Fubini's Theorem and dominated convergence is crucial. (Using complex functions will need to use the diffrentiation under the integral sign for complex valued function and path integral whose proof is much harder.)

  • @konchady1
    @konchady1 ปีที่แล้ว +8

    The trouble with using contour for this problem is that ln(1+z^4) has a singularity at z=+/- sqrt(i) that's non-removable. It can still be done but, as you said, not easy.

  • @nafaidni
    @nafaidni ปีที่แล้ว +1

    Not sure why people use such advanced methods for integrals like at 15:21. When the most "challenging" part of an integral is a simple root, the easiest solution always seems to be basic u substitution. In this case u = sqrt(t) so t = u^2, dt= 2u dt. That integral is of 2u(1-u)/(u(1-u^2)) du. Trivially this is of 2(1-u)/(1-u^2) du, which factors out via long division or basic inspection as 2/(1+u) du.
    The fact the inverse of the substitution of a simple root of t is a simple polynomial of u makes the change of coordinates very convenient to apply to the integral.

  • @jnm11
    @jnm11 ปีที่แล้ว

    There is a much more sstraightforward way of calculating this
    define g(x,a) = log(i(a^2+x^2)(1+a^2x^2)/(1+x^2)
    then g(x,0) = log(ix^2)/(1+x^2) and
    g(x,i exp(i*pi/4)) = log(1+x^4)/(1+x^2)
    Now int(log(i)/(1+x^2),x-infinity..infnity)=I/2Pi^2
    and int(log(x^2)/(1+x^2),x-infinity..infnity)=0
    so int(g(z,0)=i/2Pi^2
    Now
    dg/da= 2*a/(1-a^2)*[1/(a^2+x^2)+1/(1+a^2*x^2)-2/(1+x^2))
    so int(dg/da dx) = 4 pi/(a-1) ( Take care here the sign of Re(a))
    Finally we need to integrate this from 0 to get 4 pi log(a-1)
    and adding the value for int(g(x,0)dx) we get
    i/2 pi^2 + -ipi^2 + 4 pi log(i exp(i*pi/4)-1) = 2 pi log(2 + sqrt(2))
    The only integral need is int(1/(1+x^2) dx , -infinity..infinity) = pi/2

  • @Sci24
    @Sci24 ปีที่แล้ว

    Fantastic class

  • @lolilollolilol7773
    @lolilollolilol7773 ปีที่แล้ว +1

    It's also called Leibnitz' technique, so I guess Leibnitz discovered it first.

    • @epicmarschmallow5049
      @epicmarschmallow5049 ปีที่แล้ว

      Feynman didn't discover it at all it was already a famous technique. He was just more famous than everyone else who used it

  • @oussamawahbi4976
    @oussamawahbi4976 ปีที่แล้ว

    PI just has to show it self everywhere

  • @Galileosays
    @Galileosays ปีที่แล้ว

    The form I=2 pi ln(2+sqrt(2)) reflects the periphery of a circle with radius ln(2+sqrt(2)). :-)

  • @ALI_S_abdalrahman
    @ALI_S_abdalrahman ปีที่แล้ว

    thank you for your interesting content you make math seems to like very simple

  • @konoveldorada5990
    @konoveldorada5990 ปีที่แล้ว +1

    A question.
    Can't we use Infinite Geometric Series for the 1/(x^2+1) and convert it to a sum series- Integration?
    We may then use by parts formula and then simplify it perhaps?

    • @-Curved
      @-Curved 9 หลายเดือนก่อน

      not helpful. that series is va;id when IxI

  • @samssams1619
    @samssams1619 ปีที่แล้ว +1

    Can please someone explain to me why at 8:32 we can jiust subsitute u=x when we earlier substituted x= 1/u. I cant make sense of this

  • @darksoul.0x7
    @darksoul.0x7 ปีที่แล้ว

    I remember learning this in my applied mathematics 1 class

  • @severoon
    @severoon ปีที่แล้ว +1

    @7:30 "…integral from infinity to zero, which is quite weird. Twice that, so it's twice as weird…"
    @24:00 "…we're not going to evaluate this using our calculators, we'll use the binomial theorem. Why? Because we're sickos, obviously."

  • @johnsmith1953x
    @johnsmith1953x ปีที่แล้ว

    *Feynman's technique is NOT the single most overpowered integration technique in existence!*
    OpenAI CHAT GPT4 is!

  • @lucaspeciale9838
    @lucaspeciale9838 ปีที่แล้ว +3

    I don't know if I believe every passage, but it was nice. I think that all the trigonometric part was a little useless though, you could have factorized 1-t=(1-\sqrt(t))(1+\sqrt(t)) simplify and substitute t=u^2 (If I'm correct, the integral is rather trivially the log you find this way)

  • @marcfreydefont7520
    @marcfreydefont7520 ปีที่แล้ว

    At 13:47, you plug x=infinity in the first part and state that it is equal to pi/2 but here we have arctan(x/sqrt(t)) where clearly the denominator could clearly be a complex number (as at the end we need to replace t by i or -i). So arctan(infinity/sqrt(t)) is slightly more challenging to calculate in that case…

    • @maths_505
      @maths_505  ปีที่แล้ว

      We want to evaluate the integral functions at i and -i so we want the t variable in the denominator to be a purely imaginary number. In that case, the limit does evaluate to pi/2.
      You can try to evaluate the integral using brute force; all you'll when you get the arctan function is its logarithmic definition from complex analysis

    • @marcfreydefont7520
      @marcfreydefont7520 ปีที่แล้ว

      Did you mean purely imaginary? Well, if so, sqrt(i) and sqrt(-i) evaluate to + or -exp(i.pi/4) and + or -exp (-i.pi/4) which have both real and imaginary parts, all of which non zero and positive and negative real parts so that the arctan could end end being equal to -pi/2. I think something more convincing is needed: for me there is still a problem in that calculation, at that precise point of the derivation

    • @maths_505
      @maths_505  ปีที่แล้ว

      @@marcfreydefont7520 yes ofcourse
      Purely imaginary
      As far as the positive and negative values of the square root of i are concerned, it's quite a common practice to take just the positive square while considering principal branches. However this is an interesting proposition but I think it will check out once we multiply the two complex arguments which are conjugates

  • @Saki630
    @Saki630 ปีที่แล้ว +1

    damn bro as someone who has not done integration in over 6 years I followed along just well. Wolfram asks you for solutions to their website right?

    • @maths_505
      @maths_505  ปีที่แล้ว +2

      I've been leavin em on read 😂

  • @himanka1roy237
    @himanka1roy237 ปีที่แล้ว

    thank you sir❤

  • @epicmarschmallow5049
    @epicmarschmallow5049 ปีที่แล้ว

    It's also worth noting that the development of this technique had nothing to do with Feynman; it was known by Leibniz and expanded upon by other. Feynman was just famous

  • @AmanBansal-xb8uk
    @AmanBansal-xb8uk ปีที่แล้ว

    Just subbed, great channel!!

  • @jieyuenlee1758
    @jieyuenlee1758 7 หลายเดือนก่อน

    23:52 this is just the formula
    (A+1)²=A²+2A+1

  • @andreaspapoutsakis6342
    @andreaspapoutsakis6342 ปีที่แล้ว

    Great work.... just 1 over sq root of 2 is sq of 2 over 2

  • @captainchicky3744
    @captainchicky3744 ปีที่แล้ว +2

    Hm I had done this factoring differently. Instead of factoring into complex variables I factored this into x^2 +/- sqrt2 x +1, and used a parameter on the sqrt2

    • @maths_505
      @maths_505  ปีที่แล้ว

      That's the other video on this integral 😂

  • @Gers217
    @Gers217 8 หลายเดือนก่อน

    quite delighted to see Samsung Notes in this video

  • @alexdefoc6919
    @alexdefoc6919 11 หลายเดือนก่อน

    12:41 i just realised i went mad for math. I laughed so hard when he forgot he putted a there

  • @andrewchoi1283
    @andrewchoi1283 ปีที่แล้ว

    take a shot everytime dude says imply in the video

  • @242jemmy
    @242jemmy ปีที่แล้ว

    why do we replace -1 with i when i = -1^1/2 ???

  • @NaumRusomarov
    @NaumRusomarov ปีที่แล้ว

    super neat.

  • @burningtime7746
    @burningtime7746 ปีที่แล้ว

    I dislike where you put the exponent especially at the end, I believe it should be in the brackets as to not confuse (ln(6+4√2))^π with ln((6+4√2)^π). Great video

  • @gplgomes
    @gplgomes ปีที่แล้ว

    Doing t=sin(o)^2 there is a problem: while "t" can vary from minus infinite to infinite, this relationship can´t. It is a domain problem.

  • @francischang
    @francischang ปีที่แล้ว

    Great video! What drawing app are you using?

  • @grandcrappy
    @grandcrappy ปีที่แล้ว

    Navy Nuke School has about a 48% percent failure rate, and those rejects can already DO calculus going in. holy fuck!

  • @jrarsenault47
    @jrarsenault47 ปีที่แล้ว +1

    At 18:29, you show the integral of sec x to be ln (sec x + tan x) and the integral of tan x to be ln (sec x). However, according to CRC, these should be log (sec x + tan x) and log (sec x), respectively. What that means is that if you carry down log instead of ln through to your final equation, the answer would be pi * log (6 + 4 sqrt (2)) rather than pi * ln (6 + 4 sqrt (2)). When you plug in the numbers, you get 3.35 instead of 7.71543. Right?

    • @Bruhong99
      @Bruhong99 ปีที่แล้ว +1

      Log is ln in the context of mathematics, log id assumed base e not base 10 as it normally would be in physics for example.

  • @jimschneider799
    @jimschneider799 ปีที่แล้ว

    6 months late, but ... @15:36, making the substitution t = sin(phi)^2 seems unnecessarily complicated. The substitution u = sqrt(t) leads to dt = 2*u*du, and the integrand becomes 2*u*(1-u)/(u*(1-u^2)) du, which simplifies to 2 du/(1 + u). You wind up with the same antiderivative in the end, so I don't suppose it matters all that much.

  • @vickramratnam2320
    @vickramratnam2320 ปีที่แล้ว

    The answer is pi * ln(6+4*sqrt(2))

  • @ahmadnoorbig5191
    @ahmadnoorbig5191 ปีที่แล้ว +1

    What app are you using?

  • @heisenburger3426
    @heisenburger3426 ปีที่แล้ว

    "what he said"

  • @Dakers11
    @Dakers11 ปีที่แล้ว

    This was enjoyable, the way you solved it. But I want a cigarette now, and don't smoke.

  • @ajskilton
    @ajskilton ปีที่แล้ว

    Wow 👌 👏, thank you 👍

  • @YodaWhat
    @YodaWhat ปีที่แล้ว

    Interesting... but of course, *one must know _when and where_ it is true that _each step is valid_ if one is to apply the technique more generally. Which makes me wonder: How would 3Blue1Brown explain this?

  • @rafvermeer6777
    @rafvermeer6777 ปีที่แล้ว +1

    In the integral to determine I(t), just substitute s=1-sqrt(t). You’ll get the solution after 1 step!

  • @meeharbin4205
    @meeharbin4205 ปีที่แล้ว +2

    for antiderivative at 15:00, you could use difference of squares to get 1/(1+sqrt(t)) * 1/sqrt(t). Then you can make U = sqrt(t). Good video though, I liked how you integrated ln(x)/(1+x^2), I'm not used to using techniques like that, even though I've seen it used a few times. Any tips on how to spot stuff like that?

    • @maths_505
      @maths_505  ปีที่แล้ว +1

      It's mostly hit and trial but it works pretty well with logarithmic bois especially on this interval.

  • @yusuke4964
    @yusuke4964 ปีที่แล้ว

    How about using residue theorem? This would be simpler... but I'm not sure...

  • @sandorszabo2470
    @sandorszabo2470 ปีที่แล้ว

    exp(2 pi i ) = exp( pi i) * exp( pi i), but 1 = exp( 2 pi i) so log( exp(2 pi i))=0. However log(exp( pi i)) = pi i, and 0 neq 2 pi i. The problem is that log( u v) is not necessarily = log u + log v for complex numbers.

  • @silverfox1754
    @silverfox1754 ปีที่แล้ว

    Man i still have problems visualising the countours before integrating

  • @danielfrancis3660
    @danielfrancis3660 3 หลายเดือนก่อน

    I'd remove the plus and minus infinity as it makes no sense to me. But what do i know!

  • @danh5132
    @danh5132 ปีที่แล้ว

    12:46 the 2 different t’s is driving me insane

  • @hereaj
    @hereaj ปีที่แล้ว

    We learn all of this in the school

  • @livr5087
    @livr5087 ปีที่แล้ว

    When I feel that a extremely hard Integral requires Complex Analysis...😂

  • @sakinano99
    @sakinano99 ปีที่แล้ว

    using I for both the final solution and the integral function is potentially very confusing

  • @hajugadoco
    @hajugadoco ปีที่แล้ว +3

    Feynman takes too much credit for this. It was standard in math before he was around doing lazy tricks with poor groundings.

    • @fordtimelord8673
      @fordtimelord8673 ปีที่แล้ว

      I think Leibniz was using this technique quite often.