D-STATCOM (Detailed Model)
ฝัง
- เผยแพร่เมื่อ 5 พ.ย. 2024
- D-STATCOM (Detailed Model)
1. D-STATCOM dynamic response
Observe on Scope1 the phase A voltage and current waveforms of the D-STATCOM as well as controller signals on Scope2. After a transient lasting approximately 0.15 sec., the steady state is reached. Initially, the source voltage is such that the D-STATCOM is inactive. It does not absorb nor provide reactive power to the network. At t = 0.2 s, the source voltage is increased by 6%. The D-STATCOM compensates for this voltage increase by absorbing reactive power from the network (Q=+2.7 Mvar on trace 2 of Scope2). At t = 0.3 s, the source voltage is decreased by 6% from the value corresponding to Q = 0. The D-STATCOM must generate reactive power to maintain a 1 pu voltage (Q changes from +2.7 MVAR to -2.8 MVAR). Note that when the D-STATCOM changes from inductive to capacitive operation, the modulation index of the PWM inverter is increased from 0.56 to 0.9 (trace 4 of Scope2) which corresponds to a proportional increase in inverter voltage. Reversing of reactive power is very fast, about one cycle, as observed on D-STATCOM current (magenta signal on trace 1 of Scope1).
2. Mitigation of voltage flicker
observe on Scope3 variations of P and Q at bus B3 (1st trace) as well as voltages at buses B1 and B3 (trace 2). Without D-STATCOM, B3 voltage varies between 0.96 pu and 1.04 pu (+/- 4% variation). Now, in the D-STATCOM Controller, change the "Mode of operation" parameter back to "Voltage regulation" and restart simulation. Observe on Scope 3 that voltage fluctuation at bus B3 is now reduced to +/- 0.7 %. The D-STATCOM compensates voltage by injecting a reactive current modulated at 5 Hz (trace 3 of Scope3) and varying between 0.6 pu capacitive when voltage is low and 0.6 pu inductive when voltage is high.
Which control theory is used for DSTATCOM ? SRF theory or others ?
Pls reply
Can you send this please