spent 1 hour reading and trying to understand the textbook, still dont get it. 2 minutes into this video and i understand the whole concept about bayes theorem. thank you sir.
My stats professor must not have understood it, and acted like she had never heard of it -- it was never taught in our class, neither the name nor the math, but we were taught the answer to this kind of problem was 1/2 on the basis that one baby's gender would not influence the other's gender (which is also much more intuitive). So, don't feel bad, you can teach college stats without knowing this.
that probably was because you put in the initial effort of reading book where you had no idea what bayes theorem was. But when you started watching this video , you already had some idea of Bayes theorem , and his explanation probably caused the chunks that you have gathered to assemble and see you the overall picture .
Well done, my data science professor spent 2 hours on this and we were all confused! You explained it in 5 minutes, thanks Trefor for sharing knowledge, really appreciated!
@@EmperorsNewWardrobe Giving too much details to someone who's new to a topic is never a good idea. University and college lectures are designed to teach people who studied the topics pretty well. In contrast to that, videos like this on TH-cam, however, are made to teach.
It's been 4 years and the knowledge still flows on from here to there. I'm just glad you made this video coz I understand a concept I been struggling to understand in class!👍🏼
I was trying to understand the formula for a week and almost gave up when I found this video. Now i FINALLY understand it. Thanks so much!! This is the best explanation of Bayes' Rule that I've seen.
This is exactly how I prefer to approach Bayes' Theorem: a short and sweet reminder about conditional probability rules so that the formula can be derived from first principles rather than recalled from memory. Most excellent Trefor.
I don't usually make TH-cam comments but ever since my calculus course went online with no access to video learning, I've been drowning. This video made it so easy to understand. Thanks for posting this.
I have been scratching my head for hours and searching everywhere to understand this and I almost quit, but you sir are a legend. Thank you for the video.
This is the BEST VIDEO on Bayes Theorem. Thank you so very much for such a wonderful video. I saw so many videos but this is the ultimate. Thank you very much. My gratitude for posting such a well made video. Excellent way to explain.
Thank you! I hate math and have avoided all math heavy areas of Computer Science, until now where one of my courses is data mining. This helped immensely!
Thank you! A million times thank you! I spent all of my day yesterday pouring over textbooks and TH-cam videos getting more and more confused by this theorem. Even Khan Academy had me scratching my head (which they're usually extremely helpful); I was wondering was Sal was on while doing his videos of conditional probability & Bayes' Theorem. 1 minute into your explanation (literally) and it made sense! I just might owe you my midterm mark!
Thanks so much. Verifying the Bayes Theorem with the simplest probability formula (i.e Number of favorable outcomes (1- GG) / Number of total outcomes (3 - GG, GB, BG)) was eye opening. Thanks again bro.
Great example. My professor forgets to simplify his explanation and goes into proofs. I don't know why some professors explain things more difficult than what they are.
At 4:50 why are we told there are 4 initial possibilities rather than 3: BB, GG, BG... what possible difference could the order BG or GB make to the calculation when the question is just about the pairing and not the order?
The beautiful thing about "maths" (if you'll allow me to call it that) is it's mostly simple if you are given the steps to follow. The tragedy is that most teachers don't seem to appreciate that fact, unlike this gentleman.
Once they tell you ‘something as a given’ the rest is easy. In other words, you’re relying on prior knowledge of conditions that may be related to the event. The availability of related evidence is crucial to Bayesian inference.
I can't believe I actually understand your explanation. I feel so smart . . . uh-oh . . . it's fading . . . there it goes. Back to my old position, the Mayor of Pre-Bayesville. Watch video again . . . and again.
Wow, an explanation in plain english. My textbook says pretty much the same thing except it's almost impossible to read because of subscripts and sigmas all over everything to remind us that this applies to partitions and so the sum of B is the sum of the probabilities of B intersection A. All true but also common sense unnecessary information that just complicates the explanation. Thanks.
Sir you are masterpiece I saw many videos but know one said how this theorem derived and you maid it so easy I wish you get at least 100K subscriber by the end of this year Thank you sir
What a relief. I got Bayes' Theorem at last. Your video is brain rinsing for me after watching those confusing counterparts in youtube. Would you please speak in plain English for non native English speakers?
Hello! Quick question! Why isn't the P(1G) value of 1/2? Since P(2G) comes from pool of GG, GB, BG, and BB, shouldn't P(1G) be coming from pool of G or B?
hi, by the look of the question, how do u figure out which theorem or formula u gotta use? im super confused in the sense that i dont even know how to start my question.
very helpful, especially after a botched explanation from my lecturer. PS in your '2G | at least 1G' line it's very hard to discern between the | and 1 - if you could write 1 with an angle in future (5 years after the fact :D) it would help. Thanks
Hi, thanks for the video. What I wonder is, what are " default priors" when it comes to bayesian inference? As I understand, the priors are specific to each hypothesis or data, so how come some packages include these defaults? What do these priors entail?
Hello, at 5:01 you said the probability of having 2 girls is 1/4. However, shouldn't it be 1/3 because the four possibilities you mentioned (GG, GB, BG, BB) are permutations and not combinations? "Have two girls" is a combination, not a permutation, and the 3 possible combinations are 2 girls, 2 boys or a boy and a girl in any order, ie, Boy then Girl is the same combination as Girl then Boy.
Also your final answer is 1/3 but I think it should be 1/2, since the question asks, what's the probability of having a combination of two girls if one is already a girl. Since you already have one girl guaranteed, you just need o have 1 more girl to make 2 girls. So you really only need to calculate the chances of having a girl in a pregnancy, it is just that this particular pregnancy happens to be pregnancy number 2. Since the chances of having a girl during ANY pregnancy is 1/2, and since girl number 1 is already guaranteed, the entire responsibility so to speak lies in the second child being a girl, so it is 1*0.5 = 0.5, ie, you have a 50% chance that the second child is a girl, and since the first child is already a girl, you have a 50% chance of having two girls IF one is already a girl. If the question was what are the chances a couple's 2 kids are both girls, then the answer is 1/3 (you can have GG, GB or BG, these two are the same since we are looking at combination not permutation), or BB. But the question is what are the chances that the couple's two kids are both girls IF one is ALREADY a girl.
Thank you for creating this valuable channel. I can learn all the statistics things in easiest way. Could you please make videos about posterior probability, logistic regression and step-wise regression in future??
Thanks for the video. Wouldn't this case be a case where there is independency of evets? Births being independent refers to Independence (probability theory). The short explanation is that 𝐴 and 𝐵 are independent events iff 𝑃(𝐴∩𝐵)=𝑃(𝐴)⋅𝑃(𝐵) iff 𝑃(𝐴∣𝐵)=𝑃(𝐴), i.e. the probability of 𝐴 occurring does not at all depend on whether or not 𝐵 has occurred, i.e. whether we have knowledge that 𝐵 as having occurred or not we cannot know anything more about the probability of whether or not 𝐴 has occurred.
@@DrTrefor Thanks. So basically, it's a conditional probability, not an independent probability. Is that it? (meaning, it's the probability of having 1 girl given another, not just 1 girl).
spent 1 hour reading and trying to understand the textbook, still dont get it. 2 minutes into this video and i understand the whole concept about bayes theorem. thank you sir.
My stats professor must not have understood it, and acted like she had never heard of it -- it was never taught in our class, neither the name nor the math, but we were taught the answer to this kind of problem was 1/2 on the basis that one baby's gender would not influence the other's gender (which is also much more intuitive). So, don't feel bad, you can teach college stats without knowing this.
That's coz you read the book i suppose
that probably was because you put in the initial effort of reading book where you had no idea what bayes theorem was. But when you started watching this video , you already had some idea of Bayes theorem , and his explanation probably caused the chunks that you have gathered to assemble and see you the overall picture .
welcome being enrolled in university of youtube
THIS IS SO TRUE!
You will be the reason I pass my college Stats class, God Bless.
dude im watching this so i can pass my 7th grade math class whats going on
Lol finnely
@@theoandco.5591 the future is now
@@purpurpur2 the times are achanging
You finished college bro?
I study Probabilities in French and no French video was as helpful as yours, God bless you and thank god i'm bilingual
Well done, my data science professor spent 2 hours on this and we were all confused! You explained it in 5 minutes, thanks Trefor for sharing knowledge, really appreciated!
Why do you think it is that your professor didn’t communicate the idea well?
Lol I’m learning this in 10th grade😂
@@EmperorsNewWardrobe indeed
@@EmperorsNewWardrobe Giving too much details to someone who's new to a topic is never a good idea. University and college lectures are designed to teach people who studied the topics pretty well. In contrast to that, videos like this on TH-cam, however, are made to teach.
@@Max-tk4lj I'm learning this in 7th grade 💀
It's been 4 years and the knowledge still flows on from here to there. I'm just glad you made this video coz I understand a concept I been struggling to understand in class!👍🏼
I was trying to understand the formula for a week and almost gave up when I found this video. Now i FINALLY understand it. Thanks so much!! This is the best explanation of Bayes' Rule that I've seen.
This is exactly how I prefer to approach Bayes' Theorem: a short and sweet reminder about conditional probability rules so that the formula can be derived from first principles rather than recalled from memory. Most excellent Trefor.
Bae's theorem..
I didn't realize how many puns there are for this system
Hahaha
@@sheilama8541 👋 hey
You bastard,I suddenly miss my ex
😂
Idk what the problem is, but it seems like all teachers/textbooks fail to explain it easily. Thanks for the clear explanation in such little time
I don't usually make TH-cam comments but ever since my calculus course went online with no access to video learning, I've been drowning. This video made it so easy to understand. Thanks for posting this.
I have been scratching my head for hours and searching everywhere to understand this and I almost quit, but you sir are a legend. Thank you for the video.
You're very welcome!
I have a exam in a few hours in the morning, and felt I needed this, and you will be the reason I do well! thank you for being you.
This is so useful. I sometimes find myself getting stuck because I don’t have “enough information”. This will definitely help in this today’s exam 🔥
The most clarifying explanation I've ever seen about this, spending just a few minutes.
I'm taking statistics online with TONS of reading and was completely lost before this video. thank you so much!!
this dude is so engaging, its actually making it fun to learn this.
You sir have saved my Math IA singlehandedly. Thank you so much! This video was so simple and easy to understand, it makes me want to learn more!
IB gang, assemble
my favorite tv show is now bayeswatch
Dem 2G looking good
HAHAHAHAHAHAHAHAHAHAHAHAHAHAHAHAHAH
ba dum tsss
an old video that still has updated timestamps! great work brother!
This is the BEST VIDEO on Bayes Theorem. Thank you so very much for such a wonderful video. I saw so many videos but this is the ultimate. Thank you very much. My gratitude for posting such a well made video. Excellent way to explain.
These are the kind of videos which save you when u are starting to lose it while studying maths. Thank You Sir.
The most simplistic and understandable explanation.
Thank you for this. Hours of research didn't help but your work was exceptional.
Spent hours everywhere but could not understand. You sir, are exceptional.
Love youuuuuu. This was short, easy-to-understand and many more! Thanks for the timestamps! These are helpful.
THank you!
Today I studied it at college, not able to understand and it suddenly appeared on recommended. Thank God.
The way you sillify some things through your body language makes learning easy.
ohh amazing finally found someone teaching in English.... grt sir needed in this lckdwn time
if we had a math teacher like you, I would have never unloved maths
you made it so obvious and intuitive, that it no longer seems to deserve being called "Bayes Theorem", as if he had to spend years working it out :-)
Your videos literally teach me better than all of my professor's! Great job!!!!! Thank you!
Thank you!
I hate math and have avoided all math heavy areas of Computer Science, until now where one of my courses is data mining.
This helped immensely!
Thank you! A million times thank you! I spent all of my day yesterday pouring over textbooks and TH-cam videos getting more and more confused by this theorem. Even Khan Academy had me scratching my head (which they're usually extremely helpful); I was wondering was Sal was on while doing his videos of conditional probability & Bayes' Theorem.
1 minute into your explanation (literally) and it made sense! I just might owe you my midterm mark!
Super Saver for my tomorrow's Exam!!!! THANKYOU SIR
Thank you for giving me an easy explanation of Bayes' Theorem.
You are really awewome Sir!!
Your explanation level is better than Khan Acadamy👍❤🙏
Thanks so much. Verifying the Bayes Theorem with the simplest probability formula (i.e Number of favorable outcomes (1- GG) / Number of total outcomes (3 - GG, GB, BG)) was eye opening. Thanks again bro.
I was going to teach this theorem to my students for machine learning model and you made it easy for me to explain .
Great example. My professor forgets to simplify his explanation and goes into proofs. I don't know why some professors explain things more difficult than what they are.
Somebody said " if you can't put things in a simple way , you haven't understood it well "
Just wanna say thank you. Such simple explanation!
At 4:50 why are we told there are 4 initial possibilities rather than 3: BB, GG, BG... what possible difference could the order BG or GB make to the calculation when the question is just about the pairing and not the order?
The beautiful thing about "maths" (if you'll allow me to call it that) is it's mostly simple if you are given the steps to follow. The tragedy is that most teachers don't seem to appreciate that fact, unlike this gentleman.
Once they tell you ‘something as a given’ the rest is easy. In other words, you’re relying on prior knowledge of conditions that may be related to the event. The availability of related evidence is crucial to Bayesian inference.
Thank you very much sir.......🤩🤩🤩 May God succeed you in your life
Oh man I'm teaching myself probability and this video was so helpful!!! I couldn't understand the textbook at all. Thanks!
This video is very useful and easy to understand the theroem😉
I can't believe I actually understand your explanation. I feel so smart . . . uh-oh . . . it's fading . . . there it goes. Back to my old position, the Mayor of Pre-Bayesville. Watch video again . . . and again.
Thank you for the video. I was scared about the topic before but now your light came. thanks!
Great video. Clear and concise. Gave me more insight than 2b1b
Let's pay him back by watching the adds on his videos don't skip adds please
Wow. Now I'm in love with this video. I've been watching every Short video on TH-cam about naive Bayes, and this is the easiest to understand. Thanks
This man is a mad scientist
Another question is how would you tackle the same 1 girl problem from a frequentist approach?
Your passion for teaching is so wonderful, thank you!
You are the best sir.
Really appreciate your way of teaching! Thanks a lot
simple explanation but really helpful
Ur teaching style are tooo good🙏🙏🙏🙏
@@DrTrefor ur wlcm
The simplest way to explain Baye's theorem. Excellent.
Man you are legend !
I spent a lot of time understanding this shit but you explained it in 5 min !
Wow, an explanation in plain english. My textbook says pretty much the same thing except it's almost impossible to read because of subscripts and sigmas all over everything to remind us that this applies to partitions and so the sum of B is the sum of the probabilities of B intersection A. All true but also common sense unnecessary information that just complicates the explanation. Thanks.
Nothing better than figuring out that you actually already understood something, but just didn't realize it.
Way better than the stuff I’ve been reading, thank you so much 🗣
Sir you are masterpiece
I saw many videos but know one said how this theorem derived and you maid it so easy
I wish you get at least 100K subscriber by the end of this year
Thank you sir
you really are wonderful. i love your energy and enthusiasm throughout the lesson. definatley helped me. i
I'm so glad!
Thank you Dr. Bazett!
You're most welcome!
Honestly wikipedia does the best job explaining most phenomenon including this.
Finally I can recall the bayes theorem perfectly, thanks to your video!!!
I just stumbled upon your channel. Amazing videos dude, interesting and informative. Thanks a lot.
What a relief. I got Bayes' Theorem at last. Your video is brain rinsing for me after watching those confusing counterparts in youtube. Would you please speak in plain English for non native English speakers?
@@DrTrefor Thank you.
Professionalism at its best...
i understand a LOT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! more than my teacher :D THANK YOU
Thank you so much, very helpful, very clear explanation
A very nice explanation
Love ❤ from India
Hello! Quick question! Why isn't the P(1G) value of 1/2?
Since P(2G) comes from pool of GG, GB, BG, and BB, shouldn't P(1G) be coming from pool of G or B?
P(1G) is in the sense that probability of atleast 1 girl
I scored 10 on 10 in bayes theorem and I saw this video just before going to my exam hall nice explanation
i feel like crying, had a hard time before this video. you sir explained it very clear giving the most simple example.
hi, by the look of the question, how do u figure out which theorem or formula u gotta use? im super confused in the sense that i dont even know how to start my question.
I'm also using different formula
Thank you so much. You explained it so good that I won't forget it. You reasoned it so well. Thank you.
very helpful, especially after a botched explanation from my lecturer. PS in your '2G | at least 1G' line it's very hard to discern between the | and 1 - if you could write 1 with an angle in future (5 years after the fact :D) it would help. Thanks
OOOOH! So much better those other videos with overly excessive abstraction.
You can also do it like this. if P(AnB) = P(B|A)*P(A) from the multiplication rule, we can then substitute the numerator in P(A|B)= P(AnB)/P(B)
A very nice way of Explanation for Bayes Theorem so far.
you just saved my grades!!! thank you SO much 😭😭
Your class is very good❤
one of the best videos on bayes' theorem... just loved it!!!!
Won't it be the same for BG and GB?
You are a god-level teacher. Amen
Excellent video! Thank you so much. God bless you sir!
Hi, thanks for the video. What I wonder is, what are " default priors" when it comes to bayesian inference? As I understand, the priors are specific to each hypothesis or data, so how come some packages include these defaults? What do these priors entail?
Ur examples r great....
You are awesome maths teacher in foreign youtube channel
Awesome way of explaining.
Hello, at 5:01 you said the probability of having 2 girls is 1/4. However, shouldn't it be 1/3 because the four possibilities you mentioned (GG, GB, BG, BB) are permutations and not combinations? "Have two girls" is a combination, not a permutation, and the 3 possible combinations are 2 girls, 2 boys or a boy and a girl in any order, ie, Boy then Girl is the same combination as Girl then Boy.
Also your final answer is 1/3 but I think it should be 1/2, since the question asks, what's the probability of having a combination of two girls if one is already a girl. Since you already have one girl guaranteed, you just need o have 1 more girl to make 2 girls. So you really only need to calculate the chances of having a girl in a pregnancy, it is just that this particular pregnancy happens to be pregnancy number 2.
Since the chances of having a girl during ANY pregnancy is 1/2, and since girl number 1 is already guaranteed, the entire responsibility so to speak lies in the second child being a girl, so it is 1*0.5 = 0.5, ie, you have a 50% chance that the second child is a girl, and since the first child is already a girl, you have a 50% chance of having two girls IF one is already a girl.
If the question was what are the chances a couple's 2 kids are both girls, then the answer is 1/3 (you can have GG, GB or BG, these two are the same since we are looking at combination not permutation), or BB. But the question is what are the chances that the couple's two kids are both girls IF one is ALREADY a girl.
This is very helpful. Thank you for making it!!
Thank you for creating this valuable channel. I can learn all the statistics things in easiest way. Could you please make videos about posterior probability, logistic regression and step-wise regression in future??
You made it so simple. Thanks
Thanks for the video. Wouldn't this case be a case where there is independency of evets? Births being independent refers to Independence (probability theory). The short explanation is that 𝐴 and 𝐵 are independent events iff 𝑃(𝐴∩𝐵)=𝑃(𝐴)⋅𝑃(𝐵) iff 𝑃(𝐴∣𝐵)=𝑃(𝐴), i.e. the probability of 𝐴 occurring does not at all depend on whether or not 𝐵 has occurred, i.e. whether we have knowledge that 𝐵 as having occurred or not we cannot know anything more about the probability of whether or not 𝐴 has occurred.
@@DrTrefor Thanks. So basically, it's a conditional probability, not an independent probability. Is that it? (meaning, it's the probability of having 1 girl given another, not just 1 girl).
Thank q dr. Trefor 💜