The Volume of a Cylindrical Wedge with Triangular Cross-Sections

แชร์
ฝัง
  • เผยแพร่เมื่อ 2 ม.ค. 2025

ความคิดเห็น •

  • @mauriciojadulos7792
    @mauriciojadulos7792 11 หลายเดือนก่อน +1

    For any angle of cut say theta and radius A of the tree, the Volume of wedge = (2/3)A^3 tangent theta

    • @Misseldine
      @Misseldine  11 หลายเดือนก่อน +1

      Yes, that is correct. For a general radius r and angle θ, the method shown here would generalize to V = 2/3*r^3*tan θ.

  • @cosmiccosmic
    @cosmiccosmic ปีที่แล้ว +2

    Hi sorry to bother but why is there a 2 outside of the integral when your first setting the integral up, thank you

    • @Misseldine
      @Misseldine  ปีที่แล้ว +1

      It is symmetry. Because of the symmetry of the solid, we can integrate half of the solid and double the volume. This allows for simpler arithmetic at the end.

    • @mauriciojadulos7792
      @mauriciojadulos7792 11 หลายเดือนก่อน

      The limits -4 to +4 can be written 0 to 4 provided you multiply the integrand by 2 since you are dealing with 2 quadrants of the solid...

  • @Pr0fBruce
    @Pr0fBruce 4 หลายเดือนก่อน +1

    what if the angles slice did not pass through the midpoint of the cylinder?
    XXXXXXXXXX
    XXXXXXXXXX
    XXXXXXXXXX
    XXXXXXXX
    XXXXXX
    XXXX
    XX

    • @Misseldine
      @Misseldine  4 หลายเดือนก่อน +1

      Excellent question. Your cross sections would still be right triangles. Set up your integral using the same variables. The height of the triangle is parameterized by its location along the spectrum and would be unaltered. The length along the base side is what is changed now. Since the plane intersects the base circle as a line segment, the amount of the base side changed by a constant value, an amount either added to or subtracted from depending on where the plane intersects the base circle's center. It should only involve a very minor change to the integral. The area of a specific cross section should be V = 1/2*b*h*dx = 1/2*(r^2-x^2-a)^(1/2)*(r^2-x^2)^(1/2)dxx. But note that small change dramatically complicates the calculation of the antiderivative. I would recommend a numerical estimate. The original setup using isosceles triangle is a great simplifier.

  • @venkataanusha3919
    @venkataanusha3919 2 ปีที่แล้ว +1

    Nice explanation...

  • @OceanageMangoma-w4p
    @OceanageMangoma-w4p 10 หลายเดือนก่อน +1

    helpful stuff!!!!!!!

    • @Misseldine
      @Misseldine  10 หลายเดือนก่อน +1

      I'm glad it helped.

  • @joaquintorres834
    @joaquintorres834 3 ปีที่แล้ว +1

    awesome