Math Olympiad Question | A Nice Algebra Problem | What Is The Value Of "X" In This Equation?

แชร์
ฝัง
  • เผยแพร่เมื่อ 31 ธ.ค. 2024

ความคิดเห็น • 2

  • @stpat7614
    @stpat7614 3 วันที่ผ่านมา

    x^3 = 6^3
    Let a = x, and b = 6
    x^3 = 6^3
    => a^3 = b^3
    => a^3 - b^3 = b^3 - b^3
    => a^3 - b^3 = 0
    => (a - b)(a^2 + a * b + b^2) = 0
    => (a - b)(a^2 + b * a + b^2) = 0
    Suppose a - b = 0
    Remember, a = x, and b = 6
    a - b = 0
    => x - 6 = 0
    => x - 6 + 6 = 0 + 6
    => x = 6
    x1 = 6
    Suppose a^2 + b * a + b^2 = 0
    1 * a^2 + b * a + b^2 = 0
    a = (-b +/- sqrt[b^2 - 4 * 1 * b^2]) / (2 * 1)
    a = (-b +/- sqrt[b^2 * 1 - b^2 * 4]) / (2)
    a = (-b +/- sqrt[b^2 * (1 - 4)]) / 2
    a = (-b +/- sqrt[b^2 * (-3)]) / 2
    a = (-b +/- sqrt[b^2 * 3 * (-1)]) / 2
    a = (-b +/- sqrt[b^2] * sqrt[3] * sqrt[-1]) / 2
    a = (-b +/- b * sqrt[3] * i) / 2
    a = b * (-1 +/- 1 * sqrt[3] * i) / 2
    a = b * (-1 +/- sqrt[3] * i) / 2
    Remember, a = x, and b = 6
    a = b * (-1 +/- sqrt[3] * i) / 2
    => x = 6 * (-1 +/- sqrt[3] * i) / 2
    => x = ([1/2] * 6) * (-1 +/- sqrt[3] * i)
    => x = 3 * (-1 +/- sqrt[3] * i)
    x = 3 * (-1 + sqrt[3] * i), or x = 3 * (-1 - sqrt[3] * i)
    x = -3 * (1 - sqrt[3] * i), or x = -3 * (1 + sqrt[3] * i)
    x2 = -3 * (1 - sqrt[3] * i)
    x3 = -3 * (1 + sqrt[3] * i)
    {x1, x2, x3} = {6, -3 * (1 - sqrt[3] * i), -3 * (1 + sqrt[3] * i)}

  • @mukundchaffy3176
    @mukundchaffy3176 3 วันที่ผ่านมา

    Really?