An inductive proof of Fermat's little theorem.

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 ม.ค. 2025

ความคิดเห็น • 53

  • @connorschwartz7518
    @connorschwartz7518 3 ปีที่แล้ว +19

    Simplest proof of Fermat's Little Theorem I've ever seen, very nice!

    • @immersion6174
      @immersion6174 2 ปีที่แล้ว +3

      There's an even simpler proof if we used Freshman's Dream as our Lemma to prove Fermat's Little Theorem ;)

  • @littlefermat
    @littlefermat 3 ปีที่แล้ว +66

    Hi Michael,
    I appreciate the fact you have shown many nice proofs of my theorem!❤️

  • @egillandersson1780
    @egillandersson1780 3 ปีที่แล้ว +5

    I never read this proof, which is quite elegant and the easiest to retaining and to teach I know? ... now !
    Thank you !

  • @dylank6191
    @dylank6191 3 ปีที่แล้ว +11

    Good one, this is exactly how I proved it back in my Linear Algebra II class :)

  • @mohamedfarouk9654
    @mohamedfarouk9654 3 ปีที่แล้ว +4

    I am not the only one who thought for a second that it's Fermat LAST theorem

  • @kenanwood6916
    @kenanwood6916 3 ปีที่แล้ว +30

    When I first read the title, I thought it said "An inductive proof of Fermat's Last Theorem." And then I realized that was not the case. I'm disappointed now.
    Jk great video as always! Keep up the good work

    • @egillandersson1780
      @egillandersson1780 3 ปีที่แล้ว

      Ha ha !

    •  3 ปีที่แล้ว

      The Little Theorem is much more useful, to be honest.

    • @wisdomokoro8898
      @wisdomokoro8898 3 ปีที่แล้ว

      Ha ha 😂 you shouldn't be 😜 suprised my friend

  • @menohomo7716
    @menohomo7716 3 ปีที่แล้ว +5

    this is one of my favorite proof, when i was around 18yo i saw the following problem featured in the anime Madoka Magica: (n+1)^p - n^p - 1 = 0 (mod p). I saw the binomial theorem right away but how do you use the fact that p is prime? I wrote it off as "probably some higher level of math required". It hit me 2 weeks later while doing something completely unrelated: you can factor out a p in the "p choose k" part and write it p * (p-1)! / k!(p-k)!
    That proves that p divide into every number on the p'th row of Pascal Triangle. Turns out it's actually a characterization of the primes, because the other way around is also true: if n divide every number on the n'th row of Pascal Triangle, then n is prime!
    I thought I was done with the problem but much later I realized... the (n+1)^p was congruent to n^p+1 (mod p) which itself is congruent to (n-1)^p +2 and so on... so you can go all the way down to (n-n)^p+n and (n+1)^p is congruent to n+1 (mod p).
    According to wikipedia the proof is from Gauss book, and Gauss himself credit Euler.

  • @GiornoYoshikage
    @GiornoYoshikage 3 ปีที่แล้ว +2

    Never thought about such a great proof! Well done!

  • @egillandersson1780
    @egillandersson1780 3 ปีที่แล้ว +4

    Just a little precision : it is not enough to say that n! does not divide p, but that none of the factors of n! divides p. The proof is the same.

  • @seanhunter111
    @seanhunter111 10 หลายเดือนก่อน

    That's a really nice proof and well explained. THanks very much.

  • @byronwatkins2565
    @byronwatkins2565 3 ปีที่แล้ว +1

    You did skip over something subtle in discussing your sum(mod p). p choose n is zero (mod p) which means that multiplying by integers necessarily yields divisibility by p; however, if p choose n is nonzero (mod p), then the product [(p choose n) b^n] (mod p) would cycle through the integers in [0, p=1]. Having a congruent to b(mod p) ordinarily does NOT imply that ax is congruent to b(mod p); this is necessary ONLY when b=0.

  • @goodplacetostop2973
    @goodplacetostop2973 3 ปีที่แล้ว +12

    4:06 Classic mp
    7:33 Good Place To Stop

    • @tiagomrns
      @tiagomrns 3 ปีที่แล้ว

      classic mp indeed

  • @Pika250
    @Pika250 3 ปีที่แล้ว

    change in sign: (-m)^p = ((-1)^p)(m^p) which reduces to (-1)(m) = -m mod p. (-1)^2 = 1 which is the same as -1 mod 2, and if p is odd we obtain (-1)^p = -1.

  • @blankspace1482
    @blankspace1482 3 ปีที่แล้ว +3

    Hey Michael, I'm a former student of yours from way back... could you make a video on the Mandlebrot set? I find it fascinating

  • @binaryagenda
    @binaryagenda 3 ปีที่แล้ว +3

    Can you please link to your other videos proving Fermat's little theorem?

  • @darreljones8645
    @darreljones8645 3 ปีที่แล้ว

    One noteworthy consequence of the lemma is that if p is prime, every number in the pth row of Pascal's triangle (except for the 1's at the ends) is a multiple of p.

  • @thundercraft0496
    @thundercraft0496 10 หลายเดือนก่อน

    I was able to come up with this proof when I was trying to prove that n^p - n is always divisible by a prime p

  • @manucitomx
    @manucitomx 3 ปีที่แล้ว

    Thank you, professor.

  • @FlexThoseMuscles
    @FlexThoseMuscles ปีที่แล้ว

    great proof

  • @A.Andreas
    @A.Andreas 2 ปีที่แล้ว

    Hey, thanks for another great video. Just wanted to confirm the final statement you made at 7:26. You said (b+1)^p ≣ b (mod p), but wrote (b+1)^p ≣ b+1 (mod p). Which is correct?

    • @daniillitvinenko4348
      @daniillitvinenko4348 10 หลายเดือนก่อน

      I think the thing written
      (b + 1)^p = b + 1 (mod p) is the desired result assuming that some c = b + 1. c^p = c (mod p)

  • @iwersonsch5131
    @iwersonsch5131 3 ปีที่แล้ว

    If a is in Z, then a is congruent to b mod p, with b in N.

  • @eamonreidy9534
    @eamonreidy9534 3 ปีที่แล้ว

    I know it isn't what your channel does but some advanced undergrad or postgrad module series would be amazing

  • @ProfessorDBehrman
    @ProfessorDBehrman 3 ปีที่แล้ว

    Nice proof. Very easy to follow.

  • @wafizariar8555
    @wafizariar8555 3 ปีที่แล้ว

    What about some Galois theory videos? Even an introduction would be awesome!

  • @super_matematika
    @super_matematika 3 ปีที่แล้ว +1

    Good!

  • @perveilov
    @perveilov 3 ปีที่แล้ว

    I'm waiting for the big theorem later on

  • @Grizzly01
    @Grizzly01 3 ปีที่แล้ว

    4:25 'Fermazzletheorem' 🤣

  • @raesavage9793
    @raesavage9793 3 ปีที่แล้ว

    mod is just pow upside down

  • @CallMeIshmael999
    @CallMeIshmael999 3 ปีที่แล้ว

    This is an interesting proof and I think it highlights the connection between Fermat's Little Theorem and the Freshman's Dream. But I don't think you actually needed the induction. You can write n as (n-1) + 1. Then, just like in your proof, ((n-1) + 1)^p = sum(p choose k)(n-1)^k which is congruent to (n-1) + 1 = n.
    It's essentially identical to your proof but it doesn't rely on induction.

    • @toby.barnett
      @toby.barnett 3 ปีที่แล้ว +1

      Why can we say that (n-1)^k is congruent to (n-1)modP? This is something that the inductive hypothesis only assumes; we see it to be true for n=1 and so then induction allows us to prove it for consecutive natural numbers as we prove the (n+1)th case also holds, given this initial assumption. Without induction though we can’t have this assumption?

    • @CallMeIshmael999
      @CallMeIshmael999 3 ปีที่แล้ว

      @@toby.barnett Oh right, sorry. I guess I had a brainfart and forgot the power of k on it.

  • @basicallymath405
    @basicallymath405 3 ปีที่แล้ว +3

    There’s also a good group theoretic proof using LaGrange’s Theorem. Nice proof!

  • @FrankAnzalone
    @FrankAnzalone 3 ปีที่แล้ว

    My very first sentence would have been that's a good place to stop

  • @quickspace861
    @quickspace861 3 ปีที่แล้ว

    Beautiful

  • @noumanegaou3227
    @noumanegaou3227 3 ปีที่แล้ว

    Let A negative integer and p prime
    We suppose p = 2
    We have A^2 and A are both even or both odd
    Then A^2 = A mod(2)
    We suppose p 2 Then p odd
    A^p = ((-1)|A|)^p
    = (-1)^p |A|^p
    = - |A|^p = - |A| (modp)=A(modp)

  • @adityaekbote8498
    @adityaekbote8498 3 ปีที่แล้ว

    Nice!

  • @KaptenKetchup
    @KaptenKetchup 3 ปีที่แล้ว

    I have a proof for this too, but it's too large to fit in a TH-cam comment.

  • @cinedeautor6642
    @cinedeautor6642 3 ปีที่แล้ว

    If the other day we watchched that:
    -----
    In primitive Pythagorean triples, a or b must be a multiple of 3. Why?
    Since all three are squared, by Fermat's little theorem, a ^ 2 + b ^ 2 = C ^ 2 ...
    Is.
    1 +1 = 1 Mod 3 ... Absurd. Unless a or b are multiples of 3.
    1+ 0 = 1 ... So a or b has to be multiples of 3 ...
    No problem.
    ---
    Today say: Lemma 2 of primitive pitahogrian number...There no a¨2 + b 2 = 0 mod 7....Why.....I give a clue...See the group class of 7 Z/7....And, in this group, search the subgroup { 1, 2, 4}....

  • @MrWarlls
    @MrWarlls 3 ปีที่แล้ว

    For the demonstration of the lemma, you have (p n) = p!/((p-n)!n!) too (easier to write) 😉