Solving the Legendary IMO Problem 6 in 8 minutes | International Mathematical Olympiad 1988

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ก.ย. 2024
  • #IMO #IMO1988 #MathOlympiad
    Here is the solution to the Legendary Problem 6 of IMO 1988!!
    ------------------------------------------------
    Follow my Instagram page for more Maths :)
    Link: / lets.think.critically
    ------------------------------------------------
    I share Maths problems and Maths topics from well-known contests, exams and also from viewers around the world. Apart from sharing solutions to these problems, I also share my intuitions and first thoughts when I tried to solve these problems.
    Subscribe: www.youtube.co...
    Email me (address in video) your suggestions! lets.think.critically.27@gmail.com

ความคิดเห็น • 375

  • @GothicKin
    @GothicKin 3 ปีที่แล้ว +359

    The critical part is A1 is not 0 because B^2 - k can't vanish. Blink and you miss it, still a great job laying out the proof!

    • @MarioRossi-sh4uk
      @MarioRossi-sh4uk 3 ปีที่แล้ว +17

      Yes, sure. Well said.
      If you omit that detail, you may start the demonstration by stating °let's assume k is a perfect square°, and then conclude that by contradiction k must not be a perfect square.

    • @Guillaume_Paczek
      @Guillaume_Paczek 3 ปีที่แล้ว +1

      ah yes thanks, i was wondering the link with the fact we forbid k to be a square

    • @GothicKin
      @GothicKin 3 ปีที่แล้ว

      @@MarioRossi-sh4uk Probably both elegant, I wonder if that would complicate the proof or make it simpler

    • @GauravPandeyIISc
      @GauravPandeyIISc 3 ปีที่แล้ว +12

      This proves a stronger claim: Not only k is a square, it is the square of the smaller of A and B. Effectively, this proves that (a^2 + b^2)/(ab + 1) = b^2 if a>=b and a,b are both positive integers. Solving the above, we get that (b^3, b) are the only solutions to the above equation.

    • @werdo9638
      @werdo9638 2 ปีที่แล้ว +7

      @@GauravPandeyIISc thats actually not true. (a,b)=(30,8) would be a counterexample

  • @kephalopod3054
    @kephalopod3054 3 ปีที่แล้ว +40

    I saw somewhere that this problem is a particular case of the nice generalization (much harder to prove):
    Let a, b positive integers. Prove that
    if (ab)^(n-1) + 1 | a^n + b^n, then
    (a^n + b^n) / ((ab)^(n-1) + 1) is a perfect n-th power.

    • @dimitrismelas508
      @dimitrismelas508 3 ปีที่แล้ว +1

      This looks interesting, where did you find it?

    • @mattiascardecchia799
      @mattiascardecchia799 3 ปีที่แล้ว +44

      I have a wonderful proof of this, but I'm afraid it doesn't fit within the margin of this TH-cam comment section...

    • @keescanalfp5143
      @keescanalfp5143 3 ปีที่แล้ว +1

      @@mattiascardecchia799, quite interesting. could you give an indication for the starting direction of that proof.

    • @themathsgeek8528
      @themathsgeek8528 2 ปีที่แล้ว +1

      @@mattiascardecchia799 lol

    • @imauz1127
      @imauz1127 5 หลายเดือนก่อน +2

      @keescanalfp5143 it’s a fermat reference

  • @ignaciobenjamingarridoboba2071
    @ignaciobenjamingarridoboba2071 2 ปีที่แล้ว +66

    This solve is brilliant, always you assume there is a minimum (a,b) when the equation is not a perfect square, you'll always find out a smaller number than the minimum

  • @ratulee
    @ratulee 7 หลายเดือนก่อน +8

    It can be solved with elementary number theory without Vieta jumping. If you modify the rest of the theorem a little bit.
    The size of b is between ak-a and ak.
    Set b = ak - r (0

  • @pbj4184
    @pbj4184 3 ปีที่แล้ว +198

    5:47 I would like to add a few more steps here so that the jump may become clearer for those who didn't get it. A1B+1>0
    => A1B > -1
    As A1 was proved to be an integer and we know B is an integer as well (natural to be more specific), A1*B must also be integral. Hence A1B can be 0 at minimum as that is the next integer after 0
    => A1B >= 0
    A1 was shown not to be 0 and B is natural so it can't be 0. Hence since both A1 and B are non-zero, their product must also be non-zero and therefore it can only be >0
    => A1*B > 0
    Now since B is positive by virtue of being natural, A1 must also be positive. QED

    • @nicholasroberts2933
      @nicholasroberts2933 3 ปีที่แล้ว +8

      Other viewers will appreciate this comment. Thank you

    • @lewischeung868
      @lewischeung868 3 ปีที่แล้ว +7

      This comment clearly saves the proof :)

    • @tioa.p.1058
      @tioa.p.1058 3 ปีที่แล้ว +1

      thanks

    • @pedrojose392
      @pedrojose392 3 ปีที่แล้ว +6

      @@lewischeung868 , I do not agree, that it saves the proof. The proof itselve is clean and safety. It was just a step so easy, that he did not waste time explaining. The proof it is so pretty, excellent. Nothing to repair.

    • @lewischeung868
      @lewischeung868 3 ปีที่แล้ว +4

      @@pedrojose392 i am sorry to tell you that i don't agree with your point. The logic behind proof by infinite descent is to show "we can generate a smaller counter example from a given counter example". However, natural number has a lower bound, which is "1" accordingly. We can't accept an infinite descent algorithm for such problem. Then, a contradiction arises.
      Why this step is necessary? If we can't make sure A1 is positive, we cannot say (A1,B) is a possible candidate for a smaller counter example. Our infinite descent algorithm cannot bee carried out and eventually the proof is meaningless.
      I hope my terrible english can persuade you the reason behind. :)

  • @msk4246
    @msk4246 3 ปีที่แล้ว +34

    Elegance at its peak...... 🙏🙏🙏🙏🙏

  • @buxeessingh2571
    @buxeessingh2571 3 ปีที่แล้ว +462

    Remember: even Terry Tao did not find a complete proof to this question.

    • @cr1216
      @cr1216 3 ปีที่แล้ว +123

      In the limited time of the exam though. Remember in that amount of time he had to do two other questions as well, which he did well.

    • @timothy6955
      @timothy6955 3 ปีที่แล้ว +152

      and he was 12 or 13 years old

    • @kevinm1317
      @kevinm1317 3 ปีที่แล้ว +82

      Also remember that by today's standards, this is a relatively easy problem compared to then. Its about as standard as Vieta Jumping gets, but Vieta Jumping was nearly unheard of back then, which is why this problem is so famous

    • @zawadulhoque4511
      @zawadulhoque4511 3 ปีที่แล้ว +9

      @@kevinm1317 yeah today it would make a hard p1/easy p2

    • @vaibhavsingh1113
      @vaibhavsingh1113 3 ปีที่แล้ว +22

      Terrance Tao won Bronze medal in IMO at age of 11
      and I failed to even qualify for National team at age of 15

  • @user-ip4bm4xp2q
    @user-ip4bm4xp2q 3 ปีที่แล้ว +36

    Thanks,author. Please make more content like that(I'm the Russian olympiad participant)

    • @mehjabin5571
      @mehjabin5571 ปีที่แล้ว +3

      did you participate in imo?

    • @guptahaha
      @guptahaha 5 หลายเดือนก่อน +1

      Did you win any medals?

  • @ren200758
    @ren200758 11 หลายเดือนก่อน +7

    struggled with the contradiction a bit in the end. the trick is in order for this not to contradict, B^2 must equal k. nice trick!

  • @kayson971
    @kayson971 3 ปีที่แล้ว +230

    I remember seeing this problem in one of my math sessions disguised as a harmless question
    And the whole class was struggling to solve it

    • @4ltrz555
      @4ltrz555 3 ปีที่แล้ว +68

      Does your math teacher hate u guys lmao

    • @kayson971
      @kayson971 3 ปีที่แล้ว +62

      @@4ltrz555 I believe it was the coordinator that gave the question, so the funnier thing is that the teacher didn't know that this was an imo question either

    • @4ltrz555
      @4ltrz555 3 ปีที่แล้ว +6

      @@kayson971 haha

    • @yatharthsingh5349
      @yatharthsingh5349 3 ปีที่แล้ว +4

      Same, lmao.

    • @yat_ii
      @yat_ii 3 ปีที่แล้ว +11

      we do a little trolling

  • @danielontheedge
    @danielontheedge 3 ปีที่แล้ว +159

    It's quite hard to find examples of a and b that satisfy this... One example is (1, 1)

    • @lucacastenetto1230
      @lucacastenetto1230 3 ปีที่แล้ว +46

      If you take a=b³ those are all the soluzions i think

    • @patrickng8974
      @patrickng8974 3 ปีที่แล้ว +13

      There are endless number of examples: 1,1;2,8;3,27;4,64;5,125......

    • @Qermaq
      @Qermaq 3 ปีที่แล้ว +4

      Look at the thread I started a few weeks ago. People have posted a lot of insights.

    • @patrickng8974
      @patrickng8974 3 ปีที่แล้ว +10

      other than setting a = b^3, another set of solutions can be found by setting a = n^2 and k = n^3 where k(ab+1) = a^2+b^2

    • @grammairiennase624
      @grammairiennase624 3 ปีที่แล้ว +1

      @Luca Castenetto
      Wrong, (0, k) or (k, 0) for all k != 0 is good, too.
      Infinity of trivial examples, not following the a = b^3 or b = a^3 rule.

  • @webtoon1121
    @webtoon1121 3 ปีที่แล้ว +19

    Thank you very much. this idea is very helpful for my problem that ask me to prove for positve x,y if (x²+y²+6)/xy integer then it must be perfect cubes

  • @littlefermat
    @littlefermat 3 ปีที่แล้ว +28

    The problem that you'll see in every NT book for math Olympiad.

  • @jasonleelawlight
    @jasonleelawlight 7 หลายเดือนก่อน

    This method is very interesting! I didn’t expect this setup could lead to a solution. I need to watch again to better evaluate what role “being a perfect square” plays in solving this problem.

    • @jasonleelawlight
      @jasonleelawlight 7 หลายเดือนก่อน

      I think I figured it out, basically if we twist the problem a bit and assume we are only given that “k is a natural number” and nothing is said about perfect square, we can still find that the solution is actually limited to a specific structure, i.e. k must be B^2 and A must be B^3, as this is the only way this whole thing can hold up.

    • @unemployed5373
      @unemployed5373 5 หลายเดือนก่อน +1

      Thank you for clearing things up, I had no idea how this solution explains k being a perfect square.

  • @iainfulton3781
    @iainfulton3781 2 ปีที่แล้ว +16

    There's only one negative integer solution to the equation which is -5. The 8 non reducible sets of a and b are (-1,2) (-1,3) (2,-1) (3,-1) (1,-2) (1,-3) (-2,1) and (-3,1) and with these you can Vieta jump to larger absolute values. Like -5(3) - (-1) yields -14,3

  • @trungnhanpham7694
    @trungnhanpham7694 4 หลายเดือนก่อน +1

    Me, a 14 years old, suck at math, watching this, having no idea what he's talking about, but its very interesting

  • @theevilmathematician
    @theevilmathematician 3 ปีที่แล้ว +7

    Very interesting number theory problem.

  • @mathsinmo4372
    @mathsinmo4372 8 หลายเดือนก่อน +3

    hey please check this solution a²+b² can be written as (a²+b²)(1+ab) - ab(a²+b²) and as (1+ab)|(a²+b²) then ab(a²+b²) should be equal to zero In case 1, when a² + b² = 0, the expression (a² + b²)/(1 + ab) simplifies to 0/(1 + ab) = 0, which is indeed a perfect square.
    In case 2, when ab = 0, the expression (a² + b²)/(1 + ab) simplifies to (a² + b²)/(1 + 0) = (a² + b²)/1 = a² + b². Since ab = 0, it follows that a² + b² = (a + b)², which is a perfect square.
    Therefore, based on these two cases, it can be concluded that for any values of a and b, the expression (a² + b²)/(1 + ab) is always a perfect square.

    • @francescogennaro5873
      @francescogennaro5873 8 หลายเดือนก่อน +1

      you just showed that it works if a = 0 or b = 0, not for any case

    • @ostdog9385
      @ostdog9385 8 หลายเดือนก่อน +1

      Your first step is wrong. You can only say ab(a^2+b^2) is divisible by ab+1, not that it is zero. For example 2|8, but 8=(8)(2)-1(8), but 8isnt 0.

    • @mathsinmo4372
      @mathsinmo4372 8 หลายเดือนก่อน

      @@ostdog9385 i am already wrong just fun see the divisor must be greater then the remainder that is 1 + ab > -ab(a²+b²)

  • @PranavGarg_
    @PranavGarg_ 3 ปีที่แล้ว +8

    This was the second video I watched from this channel and it was a good understandable solution. Just subscribed.

  • @aaryan8104
    @aaryan8104 6 หลายเดือนก่อน +1

    i dont know a lot on how to solve these type of questions or how these even work rather but heres how i solved,please just tell me if im wrong anywhere(i certainly will be)
    let us assume
    a^2+b^2/ab+1=p where p is a natural number is not a square ----(1)
    ab+1/a^2+b^2=y which is a natural number
    ab+1=(a^2+b^2)(y)
    (a^2+b^2)(y)/(a^2+b^2)=p
    1/y=p
    y=1/p
    but according to (1) p is a natural number but i/natural number is not a natural number
    therefore our assumption is false and p is a square number

  • @pahularora9642
    @pahularora9642 3 ปีที่แล้ว +7

    Amazing solution....Loved it..

  • @ayoubaassou4361
    @ayoubaassou4361 หลายเดือนก่อน

    By the same solution we can prove that the all couples (a,b) satisfaying this property are ( a , a^3 ) and ( a^3 , a ) for all integer a . It is more general solution, on particular when we calculate the ratio for this only case we find a^2 wich is perfect square.

  • @mkj1887
    @mkj1887 2 ปีที่แล้ว +2

    My preferred wording of the problem is that the given expression is not a prime. Then: case 1 is that the expression is not an integer, in which case it certainly is not a prime. case 2 is where we show that it must be a square, and a square is never a prime. QED.

    • @monstermagnet3150
      @monstermagnet3150 8 หลายเดือนก่อน

      Yep, even harder to find now

  • @ary480
    @ary480 3 ปีที่แล้ว +1

    This channel will get 1 million by December 2021

  • @quantumgaming9180
    @quantumgaming9180 7 หลายเดือนก่อน +2

    Dude, my college professor posted on his facebook page your video here. Glad I was able to find a simpler proof of this problem

  • @iainfulton3781
    @iainfulton3781 2 ปีที่แล้ว +3

    The pairs of integers that fit the equation are x^(2n-1) - (n-2)x^(2n-5) + T(n-4)x^(2n-9) - TT(n-6)x^(2n-13) + TTT(n-8)x^(2n-17) - TTTT(n-10)x^(2n-21) + ... where T(n) is the triangle number TT(n) is the triangle number of the triangle numbers and TTT(n) is the triangle number of the triangle numbers of the triangle numbers and so on. If you substitute n = n - 1 you get the other pair and if the power becomes negative you stop the formula. So if n = 11 you get a=(x^21 - 9x^17 + 28x^13 - 35x^9+15x^5- x) b= (x^19 - 8x^15 + 21x^11 - 20x^7 + 5x^3) cause T(11-4)=28 TT(11-6) = 1+3+6+10+15 =35 TTT(11-8) = 1+1+3+1+3+6=15 TTTT(11-10) =1 and T(10-4)=21 TT(10-6)=1+3+6+10=20 TTT(10-8) = 1+1+3=5. All the coefficients add to either (1,1) (1,0) (0,1) (0,-1) (-1,0) or (-1,-1) so that x = 1 will result in 1.

    • @spiderjerusalem4009
      @spiderjerusalem4009 8 หลายเดือนก่อน

      from where did u get all these?

    • @victory6468
      @victory6468 7 หลายเดือนก่อน +1

      @@spiderjerusalem4009 proof by intimidation, write a whole bunch of mathematical jargon no one can read, and no one will doubt your proof

    • @spiderjerusalem4009
      @spiderjerusalem4009 7 หลายเดือนก่อน

      @@victory6468 the jargons are comprehensible. It's just the derivations, where it came from were utter vague

  • @pauselab5569
    @pauselab5569 6 หลายเดือนก่อน

    A nice trick is to quickly abuse symmetry and transform this into symmetric polynomials form. Then it becomes a lot easier but still hard to solve without the hell a lot of ring theory

  • @andreadevescovi4166
    @andreadevescovi4166 ปีที่แล้ว

    If ab+1 divides a^2+b^2 then b^2=a/b (it is simple: divide (a^2+b^2) by ab+1 and to make the rest=0 it is necessary b^2=a/b)
    Then b^2=a/b --> b^3=a. ----> substituting in (a^2+b^2)/(ab+1) --> (a^2+a^6)/(a^4+1)=(a^2(a^4+1))/(a^4+1)=a^2.

    • @notmymain2256
      @notmymain2256 11 หลายเดือนก่อน

      Long division "divisibility" works on polynomials, you're confusing divisibility on every a, b and divisibility on specific a, b

    • @notmymain2256
      @notmymain2256 11 หลายเดือนก่อน

      Also, don't you think it's a problem if you get a result like that since, by symmetry, you could conclude b=a^3 and so a=b=1 only solution? (btw you can easily see (2, 8) is another solution)

    • @antonioorlando5246
      @antonioorlando5246 10 หลายเดือนก่อน

      I am not able to find the condition b^2=a/b. By dividing a^b+b^2 by ab+1 the rest is a^2-a^2b-a+b^2. Now how do you elaborate on a^2-a^2b-a+b^2=0 to get that there must be b^2=a/b. Thanks

    • @BossDropbear
      @BossDropbear 7 หลายเดือนก่อน +1

      Just to express differently ... (a^2+b^2)/(ab+1)=k, where a,b,k all pos integers.
      So need k*(ab+1)=kab+k to equal a^2+b^2.
      Hence need (1) kab=a^2 i.e. kb=a and (2) k=b^2.
      Substituting in for k in eq1, then kb=(b^2)*b=b^3=a.
      With a=b^3 we substitute and simplify:
      a^2+b^2 =b^6+b^2 =(b^2)*(b^4+1)
      ab+1 = b^4+1
      So ratio = b^2 = k.
      Done.

  • @Luarhackererreape
    @Luarhackererreape 3 ปีที่แล้ว +12

    Excelente bro! me gusta que pongas los subtítulos en español! Ganaste un suscriptor :)

  • @jmart474
    @jmart474 3 ปีที่แล้ว +3

    I found an easy solution, but of course there must be something wrong with my assumption.
    a^2+b^2 = k (ab+1)
    a^2+b^2 = kab + k
    Then I consider !!!
    a^2 = kab
    b^2 = k
    So k=a/b and k=b^2 and thus a = b^3
    Substituting (b^6+b^2)/(b^4+1) = b^2
    Which is a perfect square
    Hope that you can comment on this solution.

    • @sinistergaming1418
      @sinistergaming1418 3 ปีที่แล้ว +3

      How is that possible as k cannot be equated to b^2 as we didnt prove k is a perfect square ,the main motive is to prove k is a perfect square so we cannot assume it

    • @aaykat6078
      @aaykat6078 2 ปีที่แล้ว +1

      @@sinistergaming1418 it doesn't really assume that k is a perfect square
      a+b
      ------ = n
      c+d
      if a/c =n
      Then b/d also equal n
      9+18
      -------- = 3
      3+6
      9/3=3,18/6=3
      27/9=3
      This is how division and ratio works, since we have unknowns, it's safe to say a²/ab = k, and same with b²/1= k
      Although there will be times where the solution isn't like this, so i guess this is just possible answers

  • @subramanyakarthik5843
    @subramanyakarthik5843 5 หลายเดือนก่อน

    This equation satisfies only if A and B are perfect squares when substituting to that equation will result to a perfect solution😊

  • @biscuitnerd7243
    @biscuitnerd7243 5 หลายเดือนก่อน +2

    So yay we are done :D

  • @Alberto-nz6er
    @Alberto-nz6er 5 หลายเดือนก่อน

    One of the students who solved the problem, is now the mayor of Bucharest, the city I’m living in

  • @Goldenbear6
    @Goldenbear6 หลายเดือนก่อน +1

    Why would we assume A+B is the minimum in the proof? Without the assumption that A+B is minimal, shouldn’t the Vieta formula still hold true? Then you just found another solution, A1, B to the original equation, but you have nothing to contradict with. (Just for my understanding)

    • @ninja-nd1wm
      @ninja-nd1wm 9 วันที่ผ่านมา

      Exactly my doubt
      In the end contradiction may not hav been due to taking k is not perfect square
      It may have been due to A+B Not being minimal ....

  • @chanderkumar7061
    @chanderkumar7061 4 หลายเดือนก่อน

    Sir my answer firstly distributed ab +1 in a^2+b^2 take a>=b so a^2 greater than ab +1 so if we divide than remainder will be -a/b and if we divide b^2/ab+1 remainder will be b^2 net remainder will be zero -a/b+b^2=0 so a=b^3 if we put this value in expression we got b^2 which is perfect square ... Thank you I am from india

    • @meowplays2151
      @meowplays2151 4 หลายเดือนก่อน

      really...??
      remainder is not -a/b......or how?

    • @mickerson3979
      @mickerson3979 3 หลายเดือนก่อน

      Your solution is not correct

  • @garydetlefs6095
    @garydetlefs6095 6 หลายเดือนก่อน

    I enjoy your videos but I am very curious about seeing things in the flesh so I was curious as to what numbers actually satisfy this condition. It took me about 10 seconds to write a line of maple code to produce the results and it is interesting to see that any two numbers x and x cubed will satisfy the conditions for a and b
    The only pairs less than a thousand which also satisfy this condition are
    (30,8)...(112,30)...(240,27)...(418,112)

  • @alexandergolys2087
    @alexandergolys2087 3 ปีที่แล้ว +4

    Such a cool proof, thanks!

  • @peponi3456
    @peponi3456 3 ปีที่แล้ว +3

    7:29
    Why does this cobtradiction arises because of k not being perfectly squared?
    If k was a perfect square then it would be
    A1> or =0 so A1

    • @anshumanagrawal346
      @anshumanagrawal346 3 ปีที่แล้ว

      Then B^2 - k =0

    • @peponi3456
      @peponi3456 3 ปีที่แล้ว +3

      @@anshumanagrawal346 if k not being a perfect square leads to a contradiction then k being a perfect square must not lead to a contradiction. The contradiction is a2

    • @ericzhu6620
      @ericzhu6620 3 ปีที่แล้ว +1

      @@peponi3456 4:50 from this term we can see if B^2-k = 0 then A1=0, which is not a natural number, which does not lead to a contradiction at the end since A1 is never valid as a solution, in the actual solution A1 leads to contradiction because A1 > 0, which contradicts to the assumption "(A+B) is minimal"

    • @123integration9
      @123integration9 2 ปีที่แล้ว

      Yaa man you can assume k as not a trangular number and with the contradiction you can prove that k is a trangula number.

  • @mohamedazizghorbel6413
    @mohamedazizghorbel6413 2 ปีที่แล้ว +3

    Thank you for such a nice work , all my Support ❤️

  • @suuujuuus
    @suuujuuus 10 หลายเดือนก่อน

    How do we know that A, the root, is an Integer, i.e. a non floating point number in proof that A1 is in Z?
    Also, that A1 is >0 comes from A1B+1>0 A1>(-1)/B which gets us A1>(-1) since B is an Integer. Since we just showed that A1 is a whole number and we assumed for our proof by contradiction that A1 /= 0, otherwise k would be an Integer square, A1 has to be in IN/0. Therefore A1>0.
    Feel like you not only skipped a lot of steps there, but also presented them in a wrong order.

  • @TanvirSami-jo4tx
    @TanvirSami-jo4tx 4 หลายเดือนก่อน

    I did it(vieta jumping),Andromida and milkiway,cassiopeia

  • @aua6330
    @aua6330 ปีที่แล้ว +1

    Perfectly done, thank you.

  • @Alan-dg6io
    @Alan-dg6io 2 ปีที่แล้ว +1

    Why people made this so complicated?
    Obvious (ab+1) must be greater or equal to (a^2+b^).
    If (a^2+b^2) is greater than (ab+1), the result of (ab+1)/(a^2+b^2) is less than one.
    (ab+1)>=(a^2+b^2), both side minus 2ab, then we have
    (1-ab)>=(a^+b^2-2ab)=(a-b)^2, which is greater or equal to zero.
    Then, we have (1-ab)>=0, it implies 1>=ab,
    since both a and b are positive integer, the only solution is a and b equal to 1.
    (a^2+b^2)/(ab+1)=(1+1)/(1+1)=2/2 = 1, which is perfect square.
    Is it a primary school mathematics?

    • @alainsavard8147
      @alainsavard8147 2 ปีที่แล้ว +2

      if q | r and q and r are integer, then q

    • @Alan-dg6io
      @Alan-dg6io 2 ปีที่แล้ว

      @@alainsavard8147 if q | r, q & r are integer, then q >= r. according to wikepedia.org, "|" is divisible. If q is divisible by r, q should be greater than or equal to r. Otherwise, if q < r, q/r is a fractional number.

    • @alainsavard8147
      @alainsavard8147 2 ปีที่แล้ว +3

      @@Alan-dg6io q | r means that "q divides r".

  • @gauranshbansal
    @gauranshbansal 11 หลายเดือนก่อน

    I really like your accent, that stereotypical Asian accent (I mean it in a good way, I'm not being racist, I'm Asian too) makes me much more comfortable dunno, if I'm the only one

  • @prithujsarkar2010
    @prithujsarkar2010 3 ปีที่แล้ว +11

    That's soooo cool

  • @HaotianWu-bm2fx
    @HaotianWu-bm2fx 5 หลายเดือนก่อน

    A very clear explanation👍

  • @MegaRainnyday
    @MegaRainnyday 3 ปีที่แล้ว +3

    From your proof, we can strengthen the statement by replacing a perfect square with b^2, right?
    Edit: It also need to add an assumption b

    • @zerosumgame9071
      @zerosumgame9071 3 ปีที่แล้ว +2

      No it’s not b^2. For example (8,30) is a solution which equals 4, which is not the square of either input

    • @BrunoVisnadi1
      @BrunoVisnadi1 3 ปีที่แล้ว

      We only know that for sure if a+b is mimimal

    • @mvsnpraneeth5014
      @mvsnpraneeth5014 หลายเดือนก่อน

      if a+b is minimal then we can strengthen the statement by replacing a perfect square with b^2

  • @babulalyogi1952
    @babulalyogi1952 2 ปีที่แล้ว +1

    Well I solved it in few minutes and astonishingly my solution was also correct...
    Can I send it to someone to verify it????

  • @Qermaq
    @Qermaq 3 ปีที่แล้ว +1

    What i find interesting are the answers I find: a and/or b = 0, or a = b^3, or a^3 = b, and that seems to be it.

    • @petersievert6830
      @petersievert6830 3 ปีที่แล้ว +1

      Would be sweet to proof this thing by showing, that these are the only solutions possible, because then it easily breaks down to k=b^2 (respectively k=a^2)
      There might be a way to show this in a way, that any prime factor that is in a must also be in b and vice versa and once you are there, then conclude that the exponent must be exactly 3.

    • @vindex7
      @vindex7 3 ปีที่แล้ว +3

      Unfortunately only some of the solutions are of this form. Take for example a=30, b=8.

    • @petersievert6830
      @petersievert6830 3 ปีที่แล้ว

      @@vindex7 thanks for pointing this out.

    • @Qermaq
      @Qermaq 3 ปีที่แล้ว

      @@vindex7 Yep, I'm finding 30, 112 and 27, 240 as well. As 8 and 27 are both cubes I suspect 8, 30 and 27, 240 are related. But 30,112 is a mystery.

    • @bsmith6276
      @bsmith6276 3 ปีที่แล้ว +7

      I found this: Let (a, b) be any solution pair with a>b and let s = (a^2+b^2)/(ab+1). Then another solution can be derived by creating solution pair (s*a-b, a). So if we start with a trivial (a,0) solution then that generates (a^3, a). Then from (a^3,a) we can generate (a^5-a, a^3) as another solution. And of course we can keep going to generate larger solutions.

  • @user-oy3fd1yg7e
    @user-oy3fd1yg7e 5 หลายเดือนก่อน

    I have proved:
    Let a≤b
    a is any positive integer
    If ab+1 | a²+b² and a is not a perfect cube, then b=a³.
    If ab+1 | a²+b² and a is a perfect cube, then b=x⁵-x where a=x³ and x is a positive integer.

  • @WhiteGandalfs
    @WhiteGandalfs 6 หลายเดือนก่อน

    a^2 + b^2 = d^2 is granted by pythagoras.
    P.S.: That, of course, is nonsense. But i have a biological brain, so this trigger went off, and the anti-trigger "but only if in a right triangle" didn't.
    Thus, the rest is sadly nonsense as well (but it looked so nice, you know :D)...
    d^2 = c^2 * f has to have both factors on the RHS to be either equal or each square (else the product ends up having one prime exponent uneven, thus being not square).
    Equal they cannot be, since f = (a*b + 1) is given, and its square is not equal to a^2 + b^2.
    Done.

  • @manassehdiverson
    @manassehdiverson ปีที่แล้ว

    If we assume that A=B then we have
    k=(2A^2)/(A^2+1) this is less than 2, which forces our k to be a positive integer less than 2, this is k=1 which is a perfect square. So it is better to assume either A

  • @mathisnotforthefaintofheart
    @mathisnotforthefaintofheart 2 ปีที่แล้ว +2

    Sometimes I think it is even harder to come up with a theorem like this...

  • @Miguel-xd7xp
    @Miguel-xd7xp 3 ปีที่แล้ว +4

    Vieta jumping is the elegant solution, but the others guys who solved this problem with which solution did it? 🤔

    • @prithujsarkar2010
      @prithujsarkar2010 3 ปีที่แล้ว

      most probably all of the people who got a 7 did vieta jump

    • @wayneyam1262
      @wayneyam1262 3 ปีที่แล้ว +1

      @@prithujsarkar2010 nah, numberphile said only one solved that problem perfectly

    • @Miguel-xd7xp
      @Miguel-xd7xp 3 ปีที่แล้ว +2

      @@wayneyam1262 I don't think so, if you search in the IMO web site, there were people who got 42 but only one guy got a special prize :p

    • @pbj4184
      @pbj4184 3 ปีที่แล้ว

      @@Miguel-xd7xp And that guy did it this way :)

  • @MrCarlosmario22
    @MrCarlosmario22 ปีที่แล้ว +1

    Exelente razonamiento. Muchas Gracias.

  • @elchulo4777
    @elchulo4777 หลายเดือนก่อน

    It is a very good problem

  • @LongNguyen-lg4zi
    @LongNguyen-lg4zi 3 ปีที่แล้ว +4

    why can you conclude k is a perfect square? you just proved that for every k there is only one satisfying set

    • @bwobkjobrien2508
      @bwobkjobrien2508 2 ปีที่แล้ว

      The case of the repeated root would require A^2 = B^2 - k since it would be when A1 = A (the same equation used in the proof in the video), but k = B^2 - A^2 is only positive when b>a, which is false by assumption.

  • @lewischeung868
    @lewischeung868 3 ปีที่แล้ว +3

    May I ask how to make sure A1 is a positive number?

    • @pbj4184
      @pbj4184 3 ปีที่แล้ว +2

      I posted a comment about this. Hope it helps

  • @ranjitprasad2155
    @ranjitprasad2155 3 ปีที่แล้ว +2

    Those 11 students , 🤯🤯

  • @SuperYoonHo
    @SuperYoonHo ปีที่แล้ว +2

    Thank you!!!!!!!!!!!!!!!!!!!!

  • @Dinosaur-xj3kx
    @Dinosaur-xj3kx 8 หลายเดือนก่อน

    What does ab+1 | a²+b² mean ? Why we are using vertical line between two equations?

    • @audigamer8261
      @audigamer8261 7 หลายเดือนก่อน

      ab+1 divides a²+b²

  • @brendanchamberlain9388
    @brendanchamberlain9388 3 ปีที่แล้ว +5

    really good

  • @migry
    @migry 4 หลายเดือนก่อน

    I thought that the vertical line was the C computer language “or” operator 😅

  • @fernandoalmer3312
    @fernandoalmer3312 ปีที่แล้ว +1

    Can anyone explain what is the relation between the assumption that k is not a perfect square and the minimality of the roots?

    • @florentinmunch6769
      @florentinmunch6769 ปีที่แล้ว +4

      k not square was used to deduce that A1 is not zero, and hence positive by a later argument. Minimality of roots is a fancy formulation of induction. Having (A,B) a solution, it is shown that (A1,B) is a smaller solution which is a contradiction assuming that (A,B) is a minimal solution. Here, positivity of A1 is needed so that (A1,B) is a proper solution. In other words, the Vieta jumping produces smaller and smaller roots, hitting zero at some point. But hitting zero is only possible if k is square.

    • @spiderjerusalem4009
      @spiderjerusalem4009 8 หลายเดือนก่อน

      the root A_1 = (B²-k)/A. k not being square means that can't vanish

  • @daemonturk
    @daemonturk 2 ปีที่แล้ว

    Why does the proof by contradiction imply that the assumption about k not being a perfect square is false? It could also imply the assumption about k being a natural number is false. Why is the proof sound?

  • @Whoeveriam226
    @Whoeveriam226 3 ปีที่แล้ว +9

    5:41 what if B was negative? Than if A1 is negative we're going to end up having positive denominator and, thus, k is positive as well

    • @earthlington2
      @earthlington2 3 ปีที่แล้ว +35

      A and B are both natural numbers, so B can't be negative

    • @anshumanagrawal346
      @anshumanagrawal346 3 ปีที่แล้ว

      The question states that a and b are strictly positive integers

  • @SankalpShree26
    @SankalpShree26 หลายเดือนก่อน

    HEY BRO ITS VERY EASY QUESTION EASIEST QUESTION EVER EXIST SO FIRST OF ALL WE ASSUME A AND B BE 1 WHICH IS NATURAL NO SO PUT A EQUALS TO 1 AND B EQUALS TO 1 SO ITS SOLVED IN 5SECONDS EASIEST QUESTION

    • @aryawijayaa95
      @aryawijayaa95 หลายเดือนก่อน

      I think you never read the problem,sat down and look back the problem

  • @iainfulton3781
    @iainfulton3781 2 ปีที่แล้ว

    Turn on postifications

  • @NakSrea84
    @NakSrea84 3 ปีที่แล้ว +1

    Wow so good teacher I will teach my students the same to you
    Because your skill is very nice

  • @KJ-zs7pi
    @KJ-zs7pi 3 ปีที่แล้ว +3

    Awesome😃

  • @mahxylim7983
    @mahxylim7983 11 หลายเดือนก่อน

    Nice explaination!

  • @Uknowwhois
    @Uknowwhois ปีที่แล้ว

    Bro has proved hardest imo problem by contradiction

  • @dannamilenamedranoquintero5866
    @dannamilenamedranoquintero5866 ปีที่แล้ว

    Why the contradicción say that k has to be a perfect square?

  • @Red-Brick-Dream
    @Red-Brick-Dream 11 หลายเดือนก่อน +1

    I hate how these "Olympiad" problems rely so much on niche knowledge and parlour tricks that half the professors don't even know. It's like playing football on a minefield and then blaming the players for their random bad luck.

  • @anthonypua8039
    @anthonypua8039 3 ปีที่แล้ว +8

    The proof was based on the case where a + b is the minimal being assumed. What about the rest of the cases where a + b is not the minimal ?

    • @kenthchen
      @kenthchen 3 ปีที่แล้ว +8

      This uses a proof by contradiction, where you assume that (a²+b²)/(ab+1) is not a perfect square, then you draw a contradiction from the initial assumption. In this case, we proved that there is no minimal solution that equals a non-square. Since a and b are in the natural numbers, this effectively proves that there are no solutions at all which equal a non-square. This doesn't only prove a minimal case, it proves that all the cases must lead to a perfect square.

    • @pbj4184
      @pbj4184 3 ปีที่แล้ว +12

      We didn't _assume_ a+b was minimal. We chose se (A,B) such that it gave minimal A+B as we know _a_ pair giving minimal sum must exist because there is always a minimum value in a list of integers (the list of A+B here) Then we showed that there exists a pair that gives an even smaller sum which is impossible since we chose the pair which already
      had the lowest possible sum. Therefore a logical contradiction happened and so some assumption must have been wrong. There was only one that k wasn't a perfect square. So k must be a perfect square.
      The existence of a case where a+b is minimal isn't assumed as there always exist A,B satisfying that.
      Since only the existence of (A,B) is necessary here, we are fine

    • @kenthchen
      @kenthchen 3 ปีที่แล้ว +2

      ​@@pbj4184 Really good explanation, the key here is that choosing the minimum solution is what leads to the contradiction later. The minimum solution isn't one case that was checked, but it proves every case.

    • @pbj4184
      @pbj4184 3 ปีที่แล้ว +2

      @@kenthchen Something true must work for all cases. So if it doesn't work for the case where A+B is minimal, it isn't true. And since k can only either be perfect or non-perfect square and we showed it cannot be a non-perfect square (as that leads to a contradiction), it must be a perfect square.

    • @rakeshpatil6939
      @rakeshpatil6939 3 ปีที่แล้ว

      @@pbj4184 sir can you please explain me the basis of assumption @4:58
      "That since k is not a perfect square
      Surely A1 is not equal to 0

  • @CauchyIntegralFormula
    @CauchyIntegralFormula 3 ปีที่แล้ว +2

    I don't know why the TH-cam algorithm tossed me this tonight, but:
    It needs to be established that B is not 0 in order to say that A_1 B + 1 > 0 gives you A_1 > 0. This is not hard to do, but it relies on k not being a perfect square, which is not actually ever used in the video and is critically important. If k is a perfect square, then you Vieta jump from (sqrt(k),0) to (-sqrt(k),0) and there are no issues; your minimal example is indeed minimal because the smaller solution you Vieta jump to has a negative value. Only when k is not a perfect square do you get stuck in infinite descent within the positive solutions
    Edit: A slight tweak to the argument establishes that *every* solution to the equation is a Vieta jump of (n,0) for some non-negative integer n

    • @namannamish3343
      @namannamish3343 2 ปีที่แล้ว

      i dont get it, isnt the entire proof built on the assumption that k isn't a "perfect square"?

    • @natevanderw
      @natevanderw 11 หลายเดือนก่อน

      Yea but he missed the important part that you know A_1 is not equal to zero at 5:49 because k is not a perfect square and the other thing on numerator is@@namannamish3343

  • @PracticeMakePerfectMuslim93
    @PracticeMakePerfectMuslim93 ปีที่แล้ว

    why did not predict the that a perfect square is positive number like 0 greater rather than just tell it a perfect squareroot

  • @sawyersmith5373
    @sawyersmith5373 2 ปีที่แล้ว

    Why can't the contradiction arise for perfect square k?

  • @marlongrau246
    @marlongrau246 2 ปีที่แล้ว

    I'm sorry is this related to phytarean triples? It doesn't seemed to be.

  • @mustydustard
    @mustydustard 5 หลายเดือนก่อน

    how do you know its an integer

  • @mathscornersomilpitliya4243
    @mathscornersomilpitliya4243 3 ปีที่แล้ว +1

    It's better version is to prove it =(gcd(a,b))^2

  • @srinidhikarthikbs981
    @srinidhikarthikbs981 11 หลายเดือนก่อน

    How did you assume that A1=(B^2-k)/A belongs to N (natural numbers)? Without proving any sort of relation between B^2 and k, we cannot plug in A1 in the original equation. Just because A1 is not 0 and it is an Integer, we cannot plug it into the original equation. We have to prove A1 is a natural number.

  • @AmazingVideoGaming
    @AmazingVideoGaming 3 ปีที่แล้ว +2

    *And I thought my handwriting was bad!*

  • @adithya3642
    @adithya3642 6 หลายเดือนก่อน

    6:01 im confused, what if A1 and B are both negative? also how does it being positive tell us its an integer?
    not sure how you got A1+B > 0

    • @benkahtan6802
      @benkahtan6802 3 หลายเดือนก่อน

      Since A1 = kB - A, where k, B, and A are all integers, we know A1 is an integer.
      We know A1 = (B^2 - k) / A by Vieta's formulas. Since B is an integer, and we are supposing k is not a square, then B^2 - k ≠ 0, so A1 ≠ 0.
      Combining the above two results, we know that A1 is a non-zero integer.
      We know (A1^2 + B^2) / (A1 * B + 1) = k > 0. Since the numerator A1^2 + B^2 > 0, then this quotient is only positive if the denominator A1 * B + 1 is also positive.
      A1 * B + 1 > 0 implies A1 * B > -1. We know B > 0 since it was defined that way when setting up the problem. We know from above that A1 ≠ 0. Since A1 and B are integers, their product can't be between -1 and 0. So A1 * B can't be less than 0 (-1, -2, -3, ...) and it can't be 0, so it must be greater than 0.

  • @Huxya
    @Huxya 2 ปีที่แล้ว

    My own proof ( might not be original, so for entertainment purposed only)
    1. for a = b. it's (0,0) and (1,1), the last one is also the only solution for c^2 = 1, for everything else c^2> 1 and without loss of generality a < b
    2. if (a^2+b^2)/(a*b+1) = c^2 where a < b and c^2> 1 then c^2 - 1 < b/a < c^2 + 1
    3. if c^2-1 < b/a < c^2 +1 and c^2> 1 then Always : a*c^2 - b < a and b*c^2 - a > b
    4. if exists pair (a,b) such as (a*b+1) | (a^2+b^2) and (a^2+b^2)/(a*b+1) = c^2 Then pairs (a*c^2-b, a) and (b, b*c^2 - a) also satisfy the condition and
    ((a*c^2-b)^2 + a^2)/(a*(a*c^2-b)+1) = c^2 and also ((b*c^2-a)^2 + b^2)/(b*(b*c^2-a)+1) = c^2 , easy to check, but tldr; so I'll skip the proof.
    5. Hence for each c^2 there is an infinite number of pairs (a,b) and a and b are always two consecutive numbers in the sequence A(n) = A(n-1)*c^2 - A(n-2) or the same works in backward direction : A(n) = A(n+1)*c^2 - A(n+2) and this is the most interesting thing about this sequence
    6. sequence is growing to both plus and minus infinity. But from (a^2+b^2)/(a*b +1) we can see that there can't be a pair (a,b) when a< 0 and b >0 so there are only exist sequences that are going through 0. Or pair (a,b) satisfying conditions (a^2+b^2)/(a*b+1) = c^2 exists only if in the sequence A(n) = A(n-1)*c^2 - A(n-2) this pair belongs to, also exists pair (0, d) when (0^2+d^2)/(0*d+1) = c^2. Or d^2 = c^2 d is an integer, so c is an integer too and c^2 is a square.

    • @ciapennap900elarusenindel_9
      @ciapennap900elarusenindel_9 2 ปีที่แล้ว

      Nice and elegant, congratulations! To my personal taste the statement that all the (a,b)-s are contructed by this very algorithm is even more interesting than just the squareness proof of the c^2. It gives a complete picture of what's happening.

  • @akirakato1293
    @akirakato1293 2 ปีที่แล้ว

    Why can he just state A,B are minimal, does he not gave to prove they exist with example?

  • @vasantkumarmishra3537
    @vasantkumarmishra3537 3 ปีที่แล้ว +4

    Didn't get How U have done for perfect Square u shows it is positive

    • @RogerSmith-ee4zi
      @RogerSmith-ee4zi 3 ปีที่แล้ว

      A perfect square is always positive.
      There is no perfect square that is negative
      Because negative numbers don't have roots
      + Into + = +
      - into - = +

    • @benyseus6325
      @benyseus6325 3 ปีที่แล้ว +2

      @@RogerSmith-ee4zi engineers would beg to differ. Take a trip to the complex plane yo, 😎😎😎

    • @RogerSmith-ee4zi
      @RogerSmith-ee4zi 3 ปีที่แล้ว

      @@benyseus6325 yes in the complex plane we have the imaginary number calculations

  • @marlongrau246
    @marlongrau246 2 ปีที่แล้ว

    Okay, there must be some values of a and b when divides by ab+1 gives you a 0 remainder. Okay. Please provide some samples.

  • @navjotsayal
    @navjotsayal 3 ปีที่แล้ว

    ab+1|a²+b² or (ab+1)|(a²+b²)

  • @michaelaristidou2605
    @michaelaristidou2605 3 หลายเดือนก่อน

    Couldn't A1 = B ? Because if it could, then we don't have a contradiction.

  • @bilkishchowdhury8318
    @bilkishchowdhury8318 ปีที่แล้ว

    4:36 How are A,B (the minimum roots of the equation) known to be integers?

    • @jilow
      @jilow 11 หลายเดือนก่อน

      It's not like that.
      The problem is claiming that ALL natural solutions also happen to produce a perfect square.
      So the guy says let's say we find a solution that meets all the criteria a,b are naturals and that those two expressions divide. Suppose we find a solution and not just any solution we find the smallest solution. Which of course there will be.
      Assume we have the smallest solution that is NOT a perfect square then this proofs shows if that were the case you could always make a smaller one..which is a contradiction. Therefore, it must be a perfect square.

  • @omaralvarezzaleta4728
    @omaralvarezzaleta4728 3 ปีที่แล้ว

    Soy asesor de olimpiadas de matemáticas en prepa, nivel regional,Chiapas México

  • @ankitkumar-pw6pu
    @ankitkumar-pw6pu 3 ปีที่แล้ว

    Sir I don't understand any thing what should I do to understand this solution I mean any basic available

  • @franciscook5819
    @franciscook5819 2 หลายเดือนก่อน

    No wonder this was double starred and put last on the test.
    Unless you are aware of "Vieta jumping" the chances of finding the solution in a short time are small.
    There's even a Wikipedia entry which solve this.

  • @padraiggluck2980
    @padraiggluck2980 2 ปีที่แล้ว

    Very nice. 👍

  • @yby2998
    @yby2998 10 หลายเดือนก่อน

    where is the fact that k is not perfect square be applied??? can also the proof in the video be applied when k is perfect square so that k cannot be an integer???

  • @khiemngo1098
    @khiemngo1098 3 ปีที่แล้ว +1

    I wonder where the assumption "(A + B) is minimal" is used in the proof ? What if we did not assume (A + B) to be minimal ?

    • @ericzhu6620
      @ericzhu6620 3 ปีที่แล้ว +2

      "(A + B) is minimal" is used in the very last part to create contradiction, in this solution whenever we assume a non-perfect square k which has a minimal solution (A + B), we can always find an even smaller pair (A1 + B), which is supposed to be invalid, which proves that the assumption was invalid at start, therefore proved the actual problem

  • @eduard9929
    @eduard9929 3 ปีที่แล้ว +4

    I must please ask for help on this problem !
    the sequence a(n) is defined like this:
    a(n) = a(n-1) / 5 , if a(n-1) is divisible with 5 or
    a(n) = [a(n-1) * sqrt(5)] , otherwise. ( [x] is the floor function ) , with a(0) being a natural number , not equal with 0.
    Prove that this sequence contains only a finite number of terms divisible with 5 .

    • @florentinmunch6769
      @florentinmunch6769 ปีที่แล้ว

      If both a(n) and a(n+1) are not divisible by 5, then a(n+2) is roughly 5a(n), but a little bit smaller. More precisely,
      0

  • @nontth5355
    @nontth5355 3 ปีที่แล้ว +2

    Can u prove that k=gcd(a,b)² pls. This one was given to us by teacher and till this day I still have no clue how to do it. Only thing I know is this use strong induction.

    • @pbj4184
      @pbj4184 3 ปีที่แล้ว +1

      You can google "IMO 1988 Problem 6 Induction". The first or second result is a pdf containing the solution you're talking about

    • @nontth5355
      @nontth5355 3 ปีที่แล้ว +1

      @@pbj4184 thx

    • @marlongrau246
      @marlongrau246 2 ปีที่แล้ว

      This must be the case for special case of perfect numbers like phytagorean triples but I think k must be written as k^2.

  • @user-lr8od4uz1n
    @user-lr8od4uz1n 11 หลายเดือนก่อน

    Beautiful