#05 - Exemplo 3 - Distribuição Geométrica - Exercício Resolvido - Probabilidade e Esperança

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ม.ค. 2025

ความคิดเห็น • 28

  • @eduardoleandromaiamoura5966
    @eduardoleandromaiamoura5966 2 ปีที่แล้ว +8

    No item b, a soma das potências de 0,9 resulta em 3,439. Daí, segue o seguinte cálculo até o resultado: 1 - 0,1 . 3,439 = 0,6561 = 65,61%.

  • @professorfrancisco9246
    @professorfrancisco9246 ปีที่แล้ว

    Tirando essa pequena confusão na questão b, a explicação foi excelente.

  • @taysapaula
    @taysapaula ปีที่แล้ว

    Muito obrigado, essa aula me ajudou muito.

  • @juliavillacas
    @juliavillacas 6 ปีที่แล้ว +2

    Suas aulas são incríveis demais

  • @lucianadonascimentopedroso4634
    @lucianadonascimentopedroso4634 5 ปีที่แล้ว +1

    Suas aulas são ótimas, obrigada!

  • @Dj_Alien_Beat
    @Dj_Alien_Beat 4 ปีที่แล้ว

    Obrigado pela aula professor. Muito boa explicação

  • @luanabarbosalima776
    @luanabarbosalima776 ปีที่แล้ว

    Professor, a questao B esta correta?

  • @caiomelqui
    @caiomelqui 6 ปีที่แล้ว +13

    Acho que o cálculo da letra B está errado. Fiz e refiz e deu 65,61%. Confere?

    • @josecarlossoaresjunior6675
      @josecarlossoaresjunior6675 6 ปีที่แล้ว +3

      Você fez o calculo correto para p(X>=5), só que não é o que a questão pede, ela pede p(X>5) já que o sucesso só ocorre do 6 pra frente nesse caso, o professor também fez toda a conta no vídeo usando p(X>=5) mas colocou o resultado da p(X>5), resumindo o calculo dele faltou o termo 0.9^4 que seria do quinto dia e é exatamente o que faltou no seu, mas como ele já tinha a resposta final de antemão a conta dele ficou errada com a resposta certa.

    • @Vanderson818
      @Vanderson818 6 ปีที่แล้ว +4

      Também fiz como você. Acredito que o professor se equivocou apenas ao colocar o 0,1 em evidência. Ao meu ver, ficaria 1 - 0,1.[ 1 + 0,9 + 0,9^2 + 0,9^3 ] = 0,6561 = 65,61%

    • @josecarlossoaresjunior6675
      @josecarlossoaresjunior6675 6 ปีที่แล้ว +2

      @@Vanderson818 Ele colocou em evidência corretamente, ta igual o seu, você só simplificou 0,9^0 = 1, e 0,9^1 = 0,9. O que fez o resultado do professor dar 59,049% foi que ele incluiu o 0,9^4 nos termos em colchete, ele só não mostrou isso no vídeo pois ele fez a conta enquanto gravava e esqueceu desse termo por ter interpretado que o calculo seria o de p(X>=5), na hora de colocar o resultado ele já tinha pronto pois fez antes de gravar o vídeo com o calculo correto de p(X>5). A conta de vocês esta certa para p(X>=5), mas o calculo correto é para p(X>5) que da o resultado que o professor colocou, mas a conta tem que ter o termo 0,9^4 que é referente ao quinto dia, tenta fazer o calculo de p(X>=5) e o de p(X>5) e compara com o vídeo.

    • @Vanderson818
      @Vanderson818 6 ปีที่แล้ว +1

      @@josecarlossoaresjunior6675 Correto. Eu que não atentei para o expoente 0. Obrigado pela observação.

    • @GuilhermeSantos-cd8vb
      @GuilhermeSantos-cd8vb 5 ปีที่แล้ว

      Fiz como você.

  • @carlossilva-yc9ds
    @carlossilva-yc9ds 6 ปีที่แล้ว +1

    Professor coloque alguma ressalva sobre a letra b. Senão, vai confundir a galera.

  • @januarioangelino5536
    @januarioangelino5536 ปีที่แล้ว

    O exercicio numero 5 ... dos exercicios deixados 😅

  • @code-island
    @code-island 6 ปีที่แล้ว +3

    Acho que a letra B está errada, pois X deve ser maior que 5 e não maior igual, visto que o sucesso só ocorrerá do 6 dia pra frente, me corriga se eu estiver errado.

    • @RicardoScarpatt
      @RicardoScarpatt 6 ปีที่แล้ว

      Sim, verdade

    • @Vanderson818
      @Vanderson818 6 ปีที่แล้ว +2

      Também achei a questão ambígua, mas, como não diz 5 dias completos, entendi como P(X >= 5).

    • @AJ-md5fe
      @AJ-md5fe ปีที่แล้ว

      Tipo, se você vai na padaria comprar PELO MENOS 5 pães, você vai comprar 5 pães ou mais. A mesma coisa nessa questão

  • @RejaneAcs-eb3nw
    @RejaneAcs-eb3nw ปีที่แล้ว

    A resposta da letra B é 50,049% porque pelo menos 5 dias é igual p(x

    • @AJ-md5fe
      @AJ-md5fe ปีที่แล้ว

      Pelo menos 5 dias significa que você também conta a máquina dar defeito no quinto dia, ou seja, inclui o P(x=5). Então não pode subtrair o P(x=5) de 1.

    • @AJ-md5fe
      @AJ-md5fe ปีที่แล้ว

      Tem que subtrair de 1 todos os dias menores que 5

    • @AJ-md5fe
      @AJ-md5fe ปีที่แล้ว

      P( x >= 5) = 1 - p( x

  • @dayvisonjunior8858
    @dayvisonjunior8858 3 ปีที่แล้ว

    eu empolguei e errei a letra a kkkk