Putnam 2024, A2, A Polynomial Functional Equation

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 ม.ค. 2025

ความคิดเห็น • 10

  • @Itachi_Uchiha3112
    @Itachi_Uchiha3112 หลายเดือนก่อน +3

    please cover the rest of the problems as well in the following videos(especially waiting for problem A5).
    much appreciated.

  • @Dvir226
    @Dvir226 หลายเดือนก่อน +1

    Wow nice problem!
    Can you note what are the most important properties of polynomials that we need to use when confronting these questions?

    • @DrEbrahimian
      @DrEbrahimian  หลายเดือนก่อน

      Check out my book, Putnam Guide. I have a chapter on Polynomials. blog.umd.edu/ebrahimian/teaching/

  • @abdulllllahhh
    @abdulllllahhh หลายเดือนก่อน

    can you try B6? I feel like it was one of the more doable B6 questions, but i didn't wanna risk wasting time trying it in the exam.

    • @DrEbrahimian
      @DrEbrahimian  หลายเดือนก่อน

      I haven’t gotten to session B yet. I’ll try!

  • @АлександрОрлов-ж6д
    @АлександрОрлов-ж6д หลายเดือนก่อน

    is that for all real x?

  • @ChristopherBitti
    @ChristopherBitti หลายเดือนก่อน

    Don't we know that p(x) - x divides p(p(x)) - x because p(x) - x = 0 (mod p(x) - x) => p(x) = x (mod (p(x) - x) => p(p(x)) - x = p(x) - x = 0 (mod p(x) - x) ???
    I did something similar for the main portion of the problem. I noted that (p(x) - x)^2 = p(x)^2 - 2xp(x) + x^2 so p(x)^2 = 2xp(x) - x^2 (mod (p(x) - x)^2)
    Now assuming p(x) has degree n >= 2
    This allows us to reduce p(x)^k mod (p(x) - x)^2 to something of the form a(x)p(x) + b(x) with degree n + k - 1, this can be proven with induction
    Then p(p(x)) - x = c_n * p(x)^n + ... + c_1 * p(x) + c_0 - x (mod (p(x) - x)^2) and this right hand side is congruent to a polynomial with degree 2n - 1 by the above observation which has nonzero degree smaller than (p(x) - x)^2 and so it can't be congruent to 0. Thus n < 2. Figuring out the rest is easy as you showed in the video.

    • @DrEbrahimian
      @DrEbrahimian  หลายเดือนก่อน +1

      Yes, this is similar to what I did. Thanks for sharing.

    • @ChristopherBitti
      @ChristopherBitti หลายเดือนก่อน

      @@DrEbrahimian Yes, same idea, just slightly different execution. Your way definitely seems more slick.