Mysterious Sums and How to Approach Them

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 พ.ย. 2024

ความคิดเห็น • 93

  • @Makem12
    @Makem12 17 ชั่วโมงที่ผ่านมา +138

    Zundamon is replacing the Indian TH-camrs who got me through my college courses all those years ago.

    • @thunderpokemon2456
      @thunderpokemon2456 15 ชั่วโมงที่ผ่านมา +1

      😂 it cant as she give more abstract ones not basics.

  • @linuxnoodle8682
    @linuxnoodle8682 18 ชั่วโมงที่ผ่านมา +131

    I AM CONCURRENTLY WATCHING ZUNDAMONS THEOREM IN ENGLISH AND JP TO LEARN TWICE AS FAST. I CAN FEEL MY BRAIN EXPAND AND STRETCH OUT TO THE VERY VESTIGES OF MY SKULL. ABSTRACTED NESTED CESARO MEANS HAVE LED TO ME TO ENLIGHTENMENT. I MUST GIVE YOU MY THANKS, ZUNDAMON.

    • @Unofficial2048tiles
      @Unofficial2048tiles 18 ชั่วโมงที่ผ่านมา

      wut

    • @AmeMori35
      @AmeMori35 18 ชั่วโมงที่ผ่านมา +8

      oh no infinite brain series

    • @Bombito_
      @Bombito_ 14 ชั่วโมงที่ผ่านมา

      ​@@AmeMori35¿How could we make this series correspond to a single value?

    • @livedandletdie
      @livedandletdie 8 ชั่วโมงที่ผ่านมา

      @@Bombito_ By watching them all.

    • @anadiacostadeoliveira4
      @anadiacostadeoliveira4 6 ชั่วโมงที่ผ่านมา

      Bro is Vsauce 💀

  • @twixerclawford
    @twixerclawford 15 ชั่วโมงที่ผ่านมา +77

    At the fringes of this video, I hear an evil voice cackling... it is saying something to me... it is whispering....... -1/12........

    • @Maginyus
      @Maginyus 10 ชั่วโมงที่ผ่านมา +4

      I thought I was the only one who heard this voice. But it seems I'm not alone...

    • @3345dbshockwave
      @3345dbshockwave 10 ชั่วโมงที่ผ่านมา +3

      Ramanujan...

    • @livedandletdie
      @livedandletdie 8 ชั่วโมงที่ผ่านมา

      Did anyone say the inverse of the harmonic series?

    • @farhanrejwan
      @farhanrejwan 6 ชั่วโมงที่ผ่านมา

      timestamp?

    • @Gladiator699
      @Gladiator699 6 ชั่วโมงที่ผ่านมา

      ​@farhanrejwan it's not in the video, it's in his head

  • @kodirovsshik
    @kodirovsshik 6 ชั่วโมงที่ผ่านมา +10

    I love how these concepts are explained properly and not the way Numberphile did it with -1/12. Love your approach to teaching a lot, good job!

    • @fgvcosmic6752
      @fgvcosmic6752 4 ชั่วโมงที่ผ่านมา +1

      Ah the infamous numberphile video. Really gotta appreciate how it's become a benchmark since it was quite badly explained lol

  • @demoaccount2392
    @demoaccount2392 17 ชั่วโมงที่ผ่านมา +18

    You're the best math teacher I never had so far, big thanks
    This method of teaching works mysteriously amazing

  • @veridizen
    @veridizen 18 ชั่วโมงที่ผ่านมา +23

    Zundamon delivered more for us, all hail Zundamon’s Theorem

  • @Sylverzen
    @Sylverzen 16 ชั่วโมงที่ผ่านมา +11

    Why are these vids so captivating to watch! Amazingly instructive and interactive

    • @gmdFrame
      @gmdFrame 9 ชั่วโมงที่ผ่านมา +1

      Well, this is almost a simulation of an interaction between a good teacher and a listening student. That makes it a bit easier to understand

  • @danielrybuk1905
    @danielrybuk1905 7 ชั่วโมงที่ผ่านมา +2

    as a mathematician i dislike the usage of the =... but the video is very good! a great intro to this topic!!! its also important to talk about the differences between this summation and the "normal" summation though... would appreciate a continuation on this so to defuse confusion in the minds of the less familiar with the topic (as this topic leads to the 1+2+3+...=-1/12 topic which NumberFile did years ago in a fashion that made math communicators struggle greatly as NumberFile did a disservice to the topic, rigorously speaking, while doing too good of a job at making the topic easy to digest for the average viewer).
    anyways liked the vid! looking forward for the next one no matter what the topic is! (i have a suggestion of making a vid about how complexity can arise from simple rules, like the Mandelbrot set for example, a really captivating idea!) much love

  • @fgvcosmic6752
    @fgvcosmic6752 4 ชั่วโมงที่ผ่านมา

    I appreciate this, especially the proper explanation of Cn. Far too many channels state the Cesaro Mean as the limit of the sequence, which it _isnt_

  • @Melody_Boi_Piyush
    @Melody_Boi_Piyush 11 ชั่วโมงที่ผ่านมา +8

    This video reawakened my -1/12 phobia (Imma name it Negaunciaphobia (uncia means 1/12 in Latin))

  • @The_Commandblock
    @The_Commandblock 10 ชั่วโมงที่ผ่านมา +6

    I discovered a method related to the pascals triangle in physics class :)
    If you just do some playing around with pascals triangle you will quickly notice that the sum of the numbers in the nth row is always 2^n (It generally doubles when you go down a row)
    Another thing you can do is expand the triangle upwards:
    01-1+1-1+1-1+1-1 (-1st row Row sum=2^(-1)
    1 0 0 0 0 0 0 0 (0th row Row sum = 2^0
    11 (1st row Row sum = 2^1
    121 (2nd row Row sum = 2^2
    1331 (3rd row Row sum = 2^3
    I think it is better if you sketch this out on some paper but yeah. The -1st row is our 1-1+1-1+1-1+1-1....... infinite sum and the row sum is equal to 1/2
    We can continue this idea: the next row with a row sum of 2^(-2) will be the 1-2+3-4+5... series.
    The next row would be the oscillating sum of the triangular numbers 1-3+6-10+15...
    The next row is the oscillating sum of the lesser known tetrahedron numbers 1-4+10-20
    As we go up, we will see the oscillating sum of 4d tetrahedron numbers, 5d tetrahedron numbers...
    This will quickly become boring.
    What if we want to calculate the sum of oscillating fibonacci numbers?
    Lets start with 0+0+0+0+1-1+2-3+5-8... = x and use the rules of pascals triangle
    0+0+0+0+1-1+2-3+5-8... = x
    0 0 0 1 0 1 -1 2 -3 = 2x since the row sum always doubles when we go down a row
    If we look closely we can see that the second row is also just 1 + the 1st row or 1+x
    2x=Second row=1+x 2x=1+x => x=1
    So the row sum of 1-1+1-3+5-8... is 1
    Using similar methods, we can calculate the sum of the alternating square numbers 1-4+9-16... (i got 0) or the sum of alternating exponential numbers 1-2+4-8+16 (i got 1/3).
    Its really fun to get these unexpected results to these seemingly impossible to evaluate series. I encourage all of you to evaluate some of these alternating series. maybe even make up your own sequence and calculate its alternating sum.
    And i will also leave a quick exercise for the reader :P
    Evaluate the infinite product 2/2*2/2*2/2*2/2... using a variation of pascals triangle

    • @danielrybuk1905
      @danielrybuk1905 7 ชั่วโมงที่ผ่านมา

      if you find a rigorous way to define summation in a way that lets you show this connection your paper will be one of the coolest I've read ever!!! im really looking forward for your contribution to the world for recreational maths and who knows, maybe applied maths as well!!!

  • @darkknight1105
    @darkknight1105 17 ชั่วโมงที่ผ่านมา +4

    This is my favorite math channel ❤
    I like how it explains math concepts simply and i also like Zundamon and Metan, one a curious student and the other an understanding and supportive teacher

  • @diacu.
    @diacu. 18 ชั่วโมงที่ผ่านมา +4

    I literally got an exam about this in about 2 weeks
    Thank you so much zundamon!

  • @張謙-n3l
    @張謙-n3l 12 ชั่วโมงที่ผ่านมา +6

    Can't believe you don't touch the "sum of all positive integers" topic

  • @alguiendeejemplo8994
    @alguiendeejemplo8994 13 ชั่วโมงที่ผ่านมา +1

    I struggled with this problem for a very long time, I didn't know the cesáro sum. Thank you Zundamon

  • @DonutFlameFPS
    @DonutFlameFPS 18 ชั่วโมงที่ผ่านมา +9

    Haven't finished video, I'm hoping it's the infamous -1/12 video
    Edit: it's not, but its still a good video

    • @Yubin_Lee_Doramelin
      @Yubin_Lee_Doramelin 18 ชั่วโมงที่ผ่านมา +3

      The infamous Ramanujan Sum...

  • @Maddieee99
    @Maddieee99 15 ชั่วโมงที่ผ่านมา +2

    yet another quality upload from zundamons theorem

  • @Harkmagic
    @Harkmagic 11 ชั่วโมงที่ผ่านมา +1

    Really wish I had something like this that started with algebra and worked its way up. I have a nephew who used youtube to self teach himself multiplication by the age of 3. He kind of stalled out there though. Conventional lessons bore him and he quickly loses interest and forgets and youtube videos suddenly become much more serious and a lot less fun after multiplication so he doesn'twatch them. This strikes a good balance of cute, easy to understand, and fun, but the topics are far to advanced for a kid trying to learn algebra.

  • @goblin5003
    @goblin5003 7 ชั่วโมงที่ผ่านมา

    I just found out there’s an English version of the channel, nice!!

  • @chr0matic556
    @chr0matic556 18 ชั่วโมงที่ผ่านมา +7

    your channel is so cute and informative :) keep it up!

  • @Marcus-Lim
    @Marcus-Lim 18 ชั่วโมงที่ผ่านมา +2

    another amazing Zundamon post 🙏

  • @dablob4491
    @dablob4491 16 ชั่วโมงที่ผ่านมา +4

    Hmmm... I wonder what's that castle in the background?

  • @-tryrectangle
    @-tryrectangle 18 ชั่วโมงที่ผ่านมา +3

    평소에 이게 궁금했어요. 정말 고마워요❤

  • @pizza8725
    @pizza8725 6 ชั่วโมงที่ผ่านมา +1

    A funny way to solve it is to say that it's the solution of x²-x(both have the solution 0 and 1) and lets just remove the delta term(so we can remove the variation) and we will get -(-1)/(2*1)=1/2

  • @AmitPrakashJena
    @AmitPrakashJena 11 ชั่วโมงที่ผ่านมา +1

    thank you for bestowing thy knowledge upon me.
    with this power i am henceforth going on a journey to calculate 1+2+3+4+5+...
    wish me luck with thine divine grace.
    (sorry for bad english)

  • @jh_lolz
    @jh_lolz 10 ชั่วโมงที่ผ่านมา +1

    your videos are amazing!

  • @AmeMori35
    @AmeMori35 18 ชั่วโมงที่ผ่านมา +4

    Hey everyone stop what your doing, new Zundamon's Theorem video is just dropped.

  • @Самийск
    @Самийск ชั่วโมงที่ผ่านมา

    Thank you so much for the videos!)

  • @penguincute3564
    @penguincute3564 30 นาทีที่ผ่านมา

    The first one:
    x=1-x
    2x=1
    x=1/2
    The second one:
    Yeah... I don't see any patterns that can be said with simple subsitution...

  • @vitowidjojo7038
    @vitowidjojo7038 16 ชั่วโมงที่ผ่านมา +1

    For the 1 - 1 + 1 - 1... Series, i prefer to use the definition of geometric sum with a limit. If you were to plug in r=-1 and a=1, you will get:
    lim x->inf 1((-1)^x -1) / -1-1
    (-1)^inf undefined, so whole expression is undefined.
    Cesaro sum is exciting, but i would like to apply it somewhere else :l

  • @AshifKhan-sn6jx
    @AshifKhan-sn6jx 16 ชั่วโมงที่ผ่านมา +1

    I love the way they both pronounce cesàro in

  • @Happy_Abe
    @Happy_Abe 17 ชั่วโมงที่ผ่านมา +3

    Is there a generalization of this to other types of averages and means not just the arithmetic one?

  • @mars_titan
    @mars_titan 5 ชั่วโมงที่ผ่านมา

    Would really like your take on -1/12 thingy, great video btw

  • @cringe5393
    @cringe5393 13 ชั่วโมงที่ผ่านมา +2

    9:10
    Metan!! How could you do this to us 😭😭😢😢

  • @CrownVirtual
    @CrownVirtual 18 ชั่วโมงที่ผ่านมา +3

    another amazing vid

  • @drdrizzl9756
    @drdrizzl9756 9 ชั่วโมงที่ผ่านมา

    for some reason i can understand math way better this way. Good video

  • @noober52614
    @noober52614 6 ชั่วโมงที่ผ่านมา

    1 - 1 + 1 is -1
    because of PEMDAS (Parentheses Exponents Multiplication Division Addition Subtraction)

  • @LegoPlayerPlays
    @LegoPlayerPlays 10 ชั่วโมงที่ผ่านมา +1

    Can you explain ramanujan series next and other types of similar patterns? Thank you.

  • @za_warka_kun
    @za_warka_kun 10 ชั่วโมงที่ผ่านมา +1

    Yo man, hete we go again, awesome feeling

  • @lililliil1761
    @lililliil1761 12 ชั่วโมงที่ผ่านมา +1

    11:36 역은 성립하지 않는 반례가 있나요?

  • @ConradoPeter-hl5ij
    @ConradoPeter-hl5ij 12 ชั่วโมงที่ผ่านมา +2

    9:32 "anyway we got an answer" 😂😂😂😂😂😂😂😂😂😂😂😂

  • @NotHereLookAway
    @NotHereLookAway 14 ชั่วโมงที่ผ่านมา +1

    sensory fruit videos + advanced math = zundamons theorem

  • @skill_issuesmo7367
    @skill_issuesmo7367 9 ชั่วโมงที่ผ่านมา

    if you notice, the audio is more human the more videos they post!

  • @wargreymon2024
    @wargreymon2024 8 ชั่วโมงที่ผ่านมา

    If you release merch(eg. t-shirt), I will buy it 😚

  • @fcolecumberri
    @fcolecumberri 17 ชั่วโมงที่ผ่านมา +3

    Cesàro: an Italian name pronounced by a Japanese TTS imitating English... Somehow not that terribly done.

  • @Tletna
    @Tletna 10 ชั่วโมงที่ผ่านมา +1

    Limits are not the same thing as actual values of sums. Even *if* they were (which they aren't always), where is the justification for using the Cesaro or Abel approaches here? Metan did a whole lot of hand waving this video. So, sadly, I was somewhat disappointed this time. This was a good introduction. But, I do hope you go into a whole lot more detail in the future. PS: Oh, man another commenter made me notice how funny your video title is (again if we accept limits as being sums).

    • @kazedcat
      @kazedcat 9 ชั่วโมงที่ผ่านมา +1

      The definition of a partial sum is arbitrary. Really some mathematicians just declared that a partial is like this and that taking the limit of a partial sum is equal to the infinite sum of an infinite series. There is no proof for it. We just assume axiomaticaly that it is true. But since it is an axiom you can replace it with a different axiom. That is why there are alternate definitions of a sum of an infinite series. Just like there are alternate fifth postulates that results into non-Euclidean geometry.

  • @riader
    @riader 13 ชั่วโมงที่ผ่านมา +1

    wake up babe new zundamons theorem dropped

  • @crusader7596
    @crusader7596 10 ชั่วโมงที่ผ่านมา +1

    Please make a video about the graphic of factorial function and why it looks so strange

    • @crusader7596
      @crusader7596 8 ชั่วโมงที่ผ่านมา

      P.s. to say correctly make a video about gamma function. Because factorial is discrete func

  • @jackmehoff9957
    @jackmehoff9957 15 ชั่วโมงที่ผ่านมา +1

    Zundamon! My headphones suck....I need math to help fix them!

  • @Mayuresh74
    @Mayuresh74 13 ชั่วโมงที่ผ่านมา +1

    What is name of other(pink) character??
    Props to creator! video was amazing and informative❤

  • @Pancake-lj6wm
    @Pancake-lj6wm 11 ชั่วโมงที่ผ่านมา +1

    When group theory 🗣️🗣️🗣️

  • @sans1331
    @sans1331 4 ชั่วโมงที่ผ่านมา

    >starts channel a month ago
    >posts a very well-edited video about a math topic
    >gains thousands of subs
    >refuses to elaborate

    • @diribigal
      @diribigal 4 ชั่วโมงที่ผ่านมา

      It's because the Japanese channel already had lots of English-speaking fans who subbed quickly when this new English channel was made

  • @s.o.m.e.o.n.e.
    @s.o.m.e.o.n.e. 15 ชั่วโมงที่ผ่านมา +1

    thanks for this video!!1!!1!1!!

  • @timehasstoppedandthefunbeg4467
    @timehasstoppedandthefunbeg4467 18 ชั่วโมงที่ผ่านมา +1

    I love zundamon and metan❤

  • @Jánooshh
    @Jánooshh 4 ชั่วโมงที่ผ่านมา

    I love you zundamon

  • @Buorgenhaeren
    @Buorgenhaeren 13 ชั่วโมงที่ผ่านมา +1

    Zundamon is cute

  • @Prinny_421
    @Prinny_421 10 ชั่วโมงที่ผ่านมา +1

    Zundamon...IN ENGLISH?!

  • @sigmacist
    @sigmacist 5 ชั่วโมงที่ผ่านมา

    Interesting that the music seems to always be in triple metre

  • @Alnidru
    @Alnidru 11 ชั่วโมงที่ผ่านมา +1

    9:11 Ah no, no me van a aplicar esa

  • @afflatusvods
    @afflatusvods 17 ชั่วโมงที่ผ่านมา +4

    honey wake up new zundamons theorem

  • @AshifKhan-sn6jx
    @AshifKhan-sn6jx 11 ชั่วโมงที่ผ่านมา +1

    Wait, is the video title a pun? Lmao

  • @gettingbetteratjee
    @gettingbetteratjee 27 นาทีที่ผ่านมา

    please do imo p1/p4s

  • @Taydolf_Swiftlor69
    @Taydolf_Swiftlor69 4 ชั่วโมงที่ผ่านมา

    Ahh yes Vtuber teaches math.

  • @pengutiny6464
    @pengutiny6464 17 ชั่วโมงที่ผ่านมา +1

    10:52 shouldn’t dat be negative

    • @NoName-rd6et
      @NoName-rd6et 13 ชั่วโมงที่ผ่านมา

      No it doesnt
      First we simplify 1/(1-x) into (1-x)^-1
      Then using the chain rule, we differntiate it into -1 * (1-x)^-2 * -1
      Both -1 terms cancel oit and thus we are left with (1-x)^-2 , hence 1/(1-x)^2

  • @fidonguyendo8847
    @fidonguyendo8847 18 ชั่วโมงที่ผ่านมา +1

    Hi!!

  • @Unofficial2048tiles
    @Unofficial2048tiles 18 ชั่วโมงที่ผ่านมา +2

    im early (i shouldnt be flexing this)

  • @ИванБарыгин-г9г
    @ИванБарыгин-г9г 9 ชั่วโมงที่ผ่านมา

    Elin music

  • @prod_EYES
    @prod_EYES 9 ชั่วโมงที่ผ่านมา

    Let S = 1-1+1-1+1-1+ …
    S = 1-(1-1+1-1+1-1+ …)
    S = 1-S
    2S = 1
    S = ½

    • @kazedcat
      @kazedcat 9 ชั่วโมงที่ผ่านมา +2

      You cannot rearrange a divergent series.

    • @prod_EYES
      @prod_EYES 9 ชั่วโมงที่ผ่านมา

      @ then why does it work

    • @kazedcat
      @kazedcat 7 ชั่วโมงที่ผ่านมา +2

      @@prod_EYES It does not always work.
      For example
      S= 1-1+1-1+1-1+1...
      S= 1-(1-1+1-1+1-1...)
      S= 1-(1-(1-1+1-1+1))
      S= 1-(1-S)
      S+(1-S)=1
      S-S+1=1
      1=1