Factorials vs Subfactorials

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 พ.ย. 2024

ความคิดเห็น • 462

  • @-YELDAH
    @-YELDAH 10 หลายเดือนก่อน +1508

    Never heard of sub factorials before, very fun!

    • @LiriosyMas
      @LiriosyMas 10 หลายเดือนก่อน +58

      exciting*

    • @-YELDAH
      @-YELDAH 10 หลายเดือนก่อน +70

      @@LiriosyMas you're right, I can't believe I made such a rookie mistake!

    • @lilac624
      @lilac624 10 หลายเดือนก่อน +2

      Me too

    • @NalosEclipso
      @NalosEclipso 10 หลายเดือนก่อน +1

      yeah!

    • @Funniwesd
      @Funniwesd 10 หลายเดือนก่อน +3

      how exciting

  • @The_Story_Of_Us
    @The_Story_Of_Us 10 หลายเดือนก่อน +957

    Subfactorials basically tell you how many different ways you can completely re-arrange a set of objects

    • @kikilolo6771
      @kikilolo6771 10 หลายเดือนก่อน +29

      thanks, that explanation is way more clear

    • @alex.g7317
      @alex.g7317 10 หลายเดือนก่อน +2

      What do you mean by ‘completely’?

    • @The_Story_Of_Us
      @The_Story_Of_Us 10 หลายเดือนก่อน +73

      @@alex.g7317 such that no object remains in its original position.

    • @alex.g7317
      @alex.g7317 10 หลายเดือนก่อน +5

      @@The_Story_Of_Us ah, right… I always wondered what use having sub factorials can have. Do you know any uses?

    • @The_Story_Of_Us
      @The_Story_Of_Us 10 หลายเดือนก่อน

      @@alex.g7317 I’d only be guessing the obvious really.

  • @fartenko
    @fartenko 10 หลายเดือนก่อน +2041

    How exciting

    • @Peterbeater1
      @Peterbeater1 10 หลายเดือนก่อน +44

      How exciting

    • @ZG4R
      @ZG4R 10 หลายเดือนก่อน +42

      How exciting !

    • @kokakin4931
      @kokakin4931 10 หลายเดือนก่อน +40

      How exciting!

    • @TheRandomInfinity
      @TheRandomInfinity 10 หลายเดือนก่อน +93

      This comment looks important so let’s put a box around it

    • @valiant8987
      @valiant8987 10 หลายเดือนก่อน +12

      How exciting

  • @mohammadfaris171
    @mohammadfaris171 10 หลายเดือนก่อน +93

    hard time learning math? this guy helps u by explaining almost every equation and formula and gives examples of it. overall 5 stars math teacher
    :)

    • @denhurensohn9276
      @denhurensohn9276 9 หลายเดือนก่อน +1

      Not really. A great teacher would have put the formula into context and made it more accessible. And don't go saying that it should've been understood from the start because then what's the teacher for?

    • @Geliyor_Gelmekte_Olan
      @Geliyor_Gelmekte_Olan 9 หลายเดือนก่อน

      Calm down br ​@@denhurensohn9276

  • @meks039
    @meks039 10 หลายเดือนก่อน +249

    For people who dont know why factorials calculate arrangements, this is how my teacher explained it that i thought was really good:
    So imagine we have 3 counters. Red, blue, and green. We need to arrange them, and we do so by selecting one at a time. For the first selection, there are 3 possibilities, one for each colour. On the second round, there are 3 possibilities, minus the one we already chose. So 3-1=2 possibilities. If you remember, we find the total number of outcomes by multiplying the number of outcomes from each stage together, say when you toss a coin twice there are two outcomes for each stage, so 2*2 outcomes, which is 4. HH, HT, TH, TT. We do that here. So when we do our final stage, there is only one choice, so our total outcomes is 3*2*1, or 3!

    • @Allena_boofe
      @Allena_boofe 10 หลายเดือนก่อน +9

      Well explanation but I didn't understand a sht may be my English weak

    • @meks039
      @meks039 10 หลายเดือนก่อน +5

      @@Allena_boofe is it your second language? feel free to ask me any questions abt it im happy to try explain differently.

    • @Allena_boofe
      @Allena_boofe 10 หลายเดือนก่อน +4

      @@meks039 yes please explain me if you can

    • @Allena_boofe
      @Allena_boofe 10 หลายเดือนก่อน

      @@meks039 it would be very greatful for me

    • @meks039
      @meks039 10 หลายเดือนก่อน +5

      @@Allena_boofe okay so is there anything specific you dont quite get? just copy paste in the bits where you lost track if you dont get it.

  • @tunasub1
    @tunasub1 10 หลายเดือนก่อน +212

    Finished calculus 3 and just found out factorials are how many ways you can arrange that many things. I don't know how I never mentally connected those

    • @davidwu8951
      @davidwu8951 10 หลายเดือนก่อน +22

      Not sure if you’ve ever used factorials for calculating probability but it’s a way to closely connect the two!

    • @peachypet808
      @peachypet808 10 หลายเดือนก่อน +4

      ​@@davidwu8951I learned about factorials in the context of probability calculation and I still only now figured that out thanks to the video. I finished school in 2018

    • @talonthehand
      @talonthehand 10 หลายเดือนก่อน

      It was in discrete math (or combinatorics - seen it called both in different schools) where I learned that

    • @venus4724
      @venus4724 10 หลายเดือนก่อน

      I literally used them for a chapter in combinatrics wnd never realised.

    • @thedaviddabrow
      @thedaviddabrow 10 หลายเดือนก่อน +3

      So THAT’S why 0! is equal to 1. Mind blown

  • @9999AWC
    @9999AWC 10 หลายเดือนก่อน +2

    This is the style of teaching that's straight to the point that would've made me actually put effort in my calculus classes. This makes it accessible, fun, and memorable. In 3 minutes I properly learned about factorials and subfactorials, and can sum them up for a random person on the street. And the best part is I'm confident that I'll remember the concept years from now just because of this explanation!

  • @willlaflam
    @willlaflam 10 หลายเดือนก่อน +7

    I’ve never thought about factorials as arranging things. Cool way to think of it. Thanks for the informative vid man

  • @2Large4U
    @2Large4U 10 หลายเดือนก่อน +10

    Your simple style, fun equations, and obvious interest in math made me subscribe 💯

    • @fitmotheyap
      @fitmotheyap 10 หลายเดือนก่อน

      You mean exciting
      There is no fun in math, only an abyss

  • @talastra
    @talastra 10 หลายเดือนก่อน +20

    This is the sort of thing I'm delighted to learn exists, especially that there's a closed form.
    Also, your calculated example was super-pedantic, which I really appreciate, because if I tried the closed form on my own, I'd probably make an arithmetic error :(
    Thanks!

  • @nycrsny3406
    @nycrsny3406 10 หลายเดือนก่อน +6

    Thanks for making these videos! This was so easily understandable, I used to sit in Probability class and finish the session without understanding a single thing SMH, really wish I had access to youtube back then, would've done so much better in math and physics subjects.

  • @pqsk
    @pqsk 10 หลายเดือนก่อน +6

    I don’t know if I ever learned this, but very fascinating. Thanks for the knowledge

  • @michamarzec8508
    @michamarzec8508 10 หลายเดือนก่อน +1

    Your explanation are very exciting! Thanks to you, I finally understand Summations!!! Thank you!!!

  • @PeterLGଈ
    @PeterLGଈ 10 หลายเดือนก่อน

    Dang! Clear and clean explanation. No fluff, no carryon. Nice. 👏

  • @CatDogDailyPosts
    @CatDogDailyPosts 10 หลายเดือนก่อน +23

    Math can be really fun if explained properly. I wish I had a teacher like you when I was learning things.

  • @prachikumar783
    @prachikumar783 10 หลายเดือนก่อน +14

    Never heard them being called 'sub factorials' before. In my 11th grade maths class, we call this 'Disarrangement', but its the same thing. Cool to know that it is called this too! Will definitely info-drop this with my classmates!

    • @TasteOfButterflies
      @TasteOfButterflies 10 หลายเดือนก่อน +2

      You gotta admit that 'derangement' sounds funnier.

    • @GeezSus
      @GeezSus 10 หลายเดือนก่อน

      Well we call it 'dearrangement' dk if it's a word or not tho

  • @wellox8856
    @wellox8856 10 หลายเดือนก่อน +5

    you are by far the best teacher

  • @Nihaal7272
    @Nihaal7272 10 หลายเดือนก่อน +14

    A very frequently asked question based on sub factorials (derangement) that is asked in many aptitude exams in India is this -
    Suppose there are 5 letters and 5 envelopes. In how many ways can you put the letters in the envelopes so that none of the letters reach its intended destination.
    The answer to this problem is simply !5, which is 44.
    Great video Andy ;)

  • @rajojha9413
    @rajojha9413 10 หลายเดือนก่อน +2

    Its really appreciable someone teaching maths in terms of how its used.

  • @losthalo428
    @losthalo428 10 หลายเดือนก่อน +5

    Are there any applications for subfactorial?

  • @flyer3455
    @flyer3455 10 หลายเดือนก่อน +1

    Thank you! I learned something new. I've approached problems that were described by this in my work but never knew how to describe it. I'd just solve it the long way in Excel.

  • @rovi1600
    @rovi1600 10 หลายเดือนก่อน +14

    I see many people who know calculus being surprised by the use of factorials in arrangement of stuff. I'm curious, were you all not taught permutations and combinations simultaneously, before or after calculus?

    • @K1JUY
      @K1JUY 10 หลายเดือนก่อน

      I covered factorials when I learned about series in calculus. However, I didn’t cover permutations and combinations until I got to discrete math in college.

    • @TurdBoi666
      @TurdBoi666 10 หลายเดือนก่อน +1

      ♥️♥️

    • @TurdBoi666
      @TurdBoi666 10 หลายเดือนก่อน +1

      With love

    • @rovi1600
      @rovi1600 10 หลายเดือนก่อน +1

      @@K1JUY Interesting, though I can see how teaching only upto Taylor series would be sufficient for basic calculus, though for me P&C was taught before calculus so that our algebraic grasp would be concrete.

  • @aventurileluipetre
    @aventurileluipetre 10 หลายเดือนก่อน +4

    Why does the subfactorial formula's sum start from 0 instead of 2?

  • @balasavenedintulashabalbeoriwe
    @balasavenedintulashabalbeoriwe 10 หลายเดือนก่อน +2

    In the formula you can also start at k=2 for any !x where x>1 just because the first two terms always cancel out.

  • @SUNKINGME
    @SUNKINGME 4 หลายเดือนก่อน

    Great explanation! The very first time I ever heard of factorals was in an explanation that if you shuffle a deck of cards you are very likely to have been the very first person to have shuffled that combination. As I recall it was !51, which is an unimaginably large number. Had these fun factoids or an explanation as succinct as yours been in my high school I might have been more interested in the subject.

  • @neurofiedyamato8763
    @neurofiedyamato8763 10 หลายเดือนก่อน +1

    first time hearign about subfactorial but this was pretty cool and kept my attention throughout

  • @XoIoRouge
    @XoIoRouge 10 หลายเดือนก่อน +3

    I've never knew about Subfactorials, that's really cool. I'm curious on use cases for it? When would I want to eliminate an arrangement that has items in already matched positions? Obviously, math is based on the abstract generic usage, but I'd love to see an example (word problem) of Subfactorial.

  • @pitapockets5481
    @pitapockets5481 10 หลายเดือนก่อน +2

    This is new to me and very interesting.Thanks Andy

  • @sylvie_v2939
    @sylvie_v2939 10 หลายเดือนก่อน +2

    I knew about combinations and permutations but not this secret third thing. Neat!

  • @goldnpiggyboi
    @goldnpiggyboi 10 หลายเดือนก่อน +1

    Freaking cool, bro! I’m gonna use these things in Scholars Bowl 😂

  • @emreguler812
    @emreguler812 10 หลายเดือนก่อน +2

    Never knew i was a math nerd until i started seeing ur videos on insta and now im here. How exciting

  • @sabitasaha399
    @sabitasaha399 9 หลายเดือนก่อน

    Easily explained a bit of permutations and derangements too!
    Great😊
    Really commendable 🎉

  • @Nepter8248
    @Nepter8248 10 หลายเดือนก่อน +4

    As someone with only a high school understanding of math, the subfactorial topic is neat and all, but seeing someone finally explain what ∑ means is probably invaluable. Thank you.
    It means 'add everything between the number under ∑ and the number over ∑,' right? Did I interpret that correctly?

    • @eelectraa9772
      @eelectraa9772 10 หลายเดือนก่อน

      Yes, you are correct. You start from whatever the variable under the sigma, in this case k, is equal to and you substitute that value of k into the equation that comes after the sigma. when you have this, you increment k by 1 and do the same thing to get a new number and add the two numbers together. Keep on doing this until your value of k matches the number above the sigma.

    • @7tales311
      @7tales311 10 หลายเดือนก่อน

      yep. Its a sum :)

  • @henrialves5054
    @henrialves5054 10 หลายเดือนก่อน +1

    Man this was amazing!!, loved the video

  • @davivify
    @davivify 10 หลายเดือนก่อน +2

    Factorials are very useful in a number of situations, like probability, sorting, etc. What is the use of subfactorials?

    • @nech060404
      @nech060404 10 หลายเดือนก่อน

      I am interested too.

  • @A_man_journey
    @A_man_journey 10 หลายเดือนก่อน +2

    The way you teach me is really awesome man ❤

  • @mathsfamily6766
    @mathsfamily6766 9 หลายเดือนก่อน +1

    very nice ! today i have learned sth new. thanks sir

  • @and_rotate69
    @and_rotate69 10 หลายเดือนก่อน

    the factorial explanation made me drop the like best way to explain what's a factorial

  • @pedroamaral7407
    @pedroamaral7407 10 หลายเดือนก่อน +1

    The fact that he is so cute and pretty makes his videos so much better

  • @TheVoiTube
    @TheVoiTube 10 หลายเดือนก่อน

    So 8 years of Andys Math videos. How exciting.

  • @dbzayan
    @dbzayan 10 หลายเดือนก่อน +4

    Would've been hilarious if the video ended at 0:07 lmao

  • @theoldhip
    @theoldhip 10 หลายเดือนก่อน

    Best explanation I've seen for this - Good job Mr. Math.

  • @braziliantsar
    @braziliantsar 10 หลายเดือนก่อน +6

    Damn, calculus is amazing. A shame I never learned it at schol because somehow, my country decided it's not important to be teached at high school. This shit is awesome

    • @alyasker2194
      @alyasker2194 10 หลายเดือนก่อน +2

      Your spirit is really amazing but unfortunately this isn't calculus😅 if you want there are tons of resources online for free to study calculus and multivariable calculus you can actually get Full courses (with exams and assignments and lectures and sections...etc) from MIT Open courseware

    • @Israel220500
      @Israel220500 10 หลายเดือนก่อน

      It's not calculus, it's combinatorics. Also there's a lot of people who won't use calculus concepts directly in their lives, so it would be pointless to teach it at high schools. For us that do like math, we can always use the internet to learn more stuff than what is taught in the school.

    • @erikjohnson9112
      @erikjohnson9112 10 หลายเดือนก่อน

      Back when I went to school, this was covered in Discrete Mathematics. I know we also covered it in high school, but it might have just been a general advanced math class? Combinatorics can serve a purpose in common life situations (ok, not super common, but still useful at times).

    • @nech060404
      @nech060404 10 หลายเดือนก่อน

      ​@@Israel220500 I disagree we should require everyone to use calculus. Calculus is the study on how things change in systematic ways.

    • @Israel220500
      @Israel220500 10 หลายเดือนก่อน

      @@nech060404 Everybody uses calculus in the sense that it is necessary to engineer the devices we use in our daily lives. Not everybody have to know how to calculate an integral though, just like not all mathematicians have to know what was the Nanjing massacre, how to speak portuguese or how to improve a website SEO. Different jobs for different people requires different skills.

  • @ViktorLoR_Mainu
    @ViktorLoR_Mainu 10 หลายเดือนก่อน +98

    Missed opportunity to talk about other proofs for 0! = 1, but i guess they might end up in another video. That would be very
    exciting

    • @EltonSilva-o3c
      @EltonSilva-o3c 10 หลายเดือนก่อน

      What a pitty

    • @swinina
      @swinina 10 หลายเดือนก่อน +2

      How exciting

    • @MeizarFarizky
      @MeizarFarizky 10 หลายเดือนก่อน +3

      Eddie Woo has made a video about that

  • @Jerry-zn1qz
    @Jerry-zn1qz 10 หลายเดือนก่อน +1

    I thought that it's gonna be a bigger version of factorials like [ exponentiation --> tetration ], but ok I learned something.

  • @joelfrom08
    @joelfrom08 5 หลายเดือนก่อน

    i put this on my watch later list when I got this video recommended to me (which was not long after it released) but never watched it.
    Now that I did, I don't know why I didn't do it earlier.
    Pretty neat

  • @JohnAranita
    @JohnAranita 10 หลายเดือนก่อน +1

    The 1st time I learned factorials was in ICS 111 @ Honolulu Community College decades ago.

  • @thoperSought
    @thoperSought 10 หลายเดือนก่อน

    that explanation was really easy to follow!

  • @ejn1011
    @ejn1011 10 หลายเดือนก่อน +5

    I had not heard of subfractionals and went in deep after watching this video. And of course, a wild e appeared. The limit as n approaches infinity of !n/n! is 1/e. How exciting.

    • @talastra
      @talastra 10 หลายเดือนก่อน

      figures.

    • @axelinedgelord4459
      @axelinedgelord4459 10 หลายเดือนก่อน

      i like math but i’m not good at it, so desmos’ graphing calculator is a good friend of mine.
      so i randomly did !x/x! and silently cried

    • @thegreenpenquin5647
      @thegreenpenquin5647 9 หลายเดือนก่อน

      Dude I just did the same thing but the other way around. That actually kinda funny lol.

  • @Machodave2020
    @Machodave2020 10 หลายเดือนก่อน

    I learned so much in this video, you have no idea.

  • @amineaitsaidi5919
    @amineaitsaidi5919 10 หลายเดือนก่อน

    Finely understanding why factorial 0 == 1, because of arrangements of course !!! Good explanation man, thank's a lot. 👍👍👍.

  • @sebastianm6600
    @sebastianm6600 10 หลายเดือนก่อน +2

    Why is the original configuration not counted towards the subfactorial?

  • @nicholashylton6857
    @nicholashylton6857 10 หลายเดือนก่อน

    This is something they never mentioned to me at school. Fascinating! 👍

  • @advaitthavare
    @advaitthavare 10 หลายเดือนก่อน +2

    Why was ABC arrangement not part of the subfactorial of 3.

  • @derekmcdaniel6029
    @derekmcdaniel6029 10 หลายเดือนก่อน

    What a great recursive formula for derangement. reminds me of dynamic programming techniques.

  • @edwardfields5243
    @edwardfields5243 10 หลายเดือนก่อน +4

    Ahhh yes discreet mathematics

  • @Peter_Riis_DK
    @Peter_Riis_DK 4 หลายเดือนก่อน

    Interesting. But, what's the practical use of subfactorials?

  • @sergioramirez6367
    @sergioramirez6367 8 หลายเดือนก่อน

    Thanks! First mathematical explanation on sub-factorial

  • @ukwuteyinoreneojo4159
    @ukwuteyinoreneojo4159 10 หลายเดือนก่อน +1

    Your are a damn good teacher😂 thanks man

  • @travisstoll3582
    @travisstoll3582 10 หลายเดือนก่อน

    You explained so clearly. Thank you. It was interesting!

  • @Cuber112
    @Cuber112 10 หลายเดือนก่อน +3

    FOR ANYONE WHO CARES N FACTORIAL DIVIDED BY N SUBFACTORIAL IS EQUAL TO E

  • @hidgik
    @hidgik 10 หลายเดือนก่อน

    Amazing! I have never ever heard of this before.

  • @danielstuart3270
    @danielstuart3270 10 หลายเดือนก่อน

    I love all math and I’ve never heard of a subfactorial. Makes perfect sense . Thx

  • @mamoLs
    @mamoLs 5 หลายเดือนก่อน

    My mind is blowing, this is so exciting!

  • @ganrimmonim
    @ganrimmonim 10 หลายเดือนก่อน

    Brit in the UK. Despite having A-Level maths and doing the first year of an Astrophysics degree, before switching to Chemistry. This is the first time I've heard of subfactorials. Thank you for the fascinating video.

    • @7tales311
      @7tales311 10 หลายเดือนก่อน

      Yeah im finishing my physics degree this year and I have genuinely never heard of them. Perhaps they're not important to my specialization, or simply i've been using derivations. real cool thing to know, though.

  • @akultechz2342
    @akultechz2342 10 หลายเดือนก่อน +1

    Mathematicians: Uhh its too long to write.. let's shorten it!
    *Random TH-camr: Content!!!*

  • @MelomaniacEarth
    @MelomaniacEarth 10 หลายเดือนก่อน

    Exciting....so much exciting!

  • @ahmettalhaefe
    @ahmettalhaefe 10 หลายเดือนก่อน +5

    Can we write 5!5=?

    • @FabioGeometryDash
      @FabioGeometryDash 4 หลายเดือนก่อน +2

      You probably need to use parentheses

  • @beaub152
    @beaub152 10 หลายเดือนก่อน

    Never heard of that before, where is it used?

  • @Talius10
    @Talius10 10 หลายเดือนก่อน +1

    I did all the advanced level maths in high school. During finite math (combinations and permutations) we were never told about subfactorials.

  • @thehermit7713
    @thehermit7713 8 หลายเดือนก่อน

    Is it the formula that is used to count dearrangement in enclosing n letters in n envelopes

  • @thesilenttraveller7
    @thesilenttraveller7 10 หลายเดือนก่อน

    Can you please use a black (or dark grey) backhround and white (or light grey) text? It would be much easier to look at the screen. Thank you, and keep up the good work )

  • @Abon963
    @Abon963 10 หลายเดือนก่อน +2

    If n-->∞ (tends to infinity) then
    lim n-->∞ (!n = n!/e)
    Meaning that,
    If the 'n' is large enough then the sub factorial of 'n' OR '!n' is approximately equal to 'n!/e'
    Is this right?

  • @chacmool2581
    @chacmool2581 10 หลายเดือนก่อน

    What about the Spanish factorial, for example, 5¡ ? Note the upside down factorial sign.

  • @linushesjedal3107
    @linushesjedal3107 10 หลายเดือนก่อน

    What use do subfactorials have?

  • @Jake_Gotthard
    @Jake_Gotthard 10 หลายเดือนก่อน

    What is the website or whatever that you’re using for this?

  • @itermercator114
    @itermercator114 10 หลายเดือนก่อน

    Cool video but just wanted to say because I realised it and can't unsee it, your outfit looks almost exactly like Terry Davis

  • @JosephPadlaJosephPadla
    @JosephPadlaJosephPadla 10 หลายเดือนก่อน

    Subfactorials are so cool. Can you explain Tetration too?

  • @timeastman8319
    @timeastman8319 10 หลายเดือนก่อน +1

    I have BA in mathematcs and I just learned something. I also enjoyed your clear presentation - subscribing! (No, that's not the factorial of "subscribing")

    • @AndyMath
      @AndyMath  10 หลายเดือนก่อน

      Awesome, thank you!

  • @Plikso
    @Plikso 9 หลายเดือนก่อน +1

    Thank you, now i know the principles of sum too 😂😂😂

  • @lefterisv1088
    @lefterisv1088 10 หลายเดือนก่อน

    So we are taking the initial arrangement of these objects and we make cycles?

  • @rafaelpascoaliczerniej297
    @rafaelpascoaliczerniej297 10 หลายเดือนก่อน +1

    This is actually a good piece of knowledge to have, might be useful one day

  • @DoxxTheMathGeek
    @DoxxTheMathGeek 10 หลายเดือนก่อน

    I did it like this:
    n! is Γ(n+1) = Γ(n+1, 0) for n being a natural number. (I always say it's equal, but the definition says it's not. qwq)
    !n is Γ(n+1, -1)/e.
    Γ(n, x) is the incomplete gamma function which is defined as the integral from x to infinity of t^(n-1)*e^-t dt.
    For odd n and negative t, t^(n-1)*e^-t is negative. when n=3 and t

  • @theattacktitan4616
    @theattacktitan4616 10 หลายเดือนก่อน +5

    But isn't it kind of weird, how the Factorial counts the original ABC-permutation, whereas the subfactorial doesn't? So, at least from the verbalexplanation, I feel like !3 should be 3, not 2

    • @hellowow4631
      @hellowow4631 10 หลายเดือนก่อน

      I was also thinking the same thing.
      Someone please answer this question

    • @PayMeToThrow
      @PayMeToThrow 10 หลายเดือนก่อน

      How many ways can you arrange the individual letters A, B, and C? 6 ways, one of the ways is ABC.
      How many ways can you scramble the string of letters "ABC"? Only 2 ways because "ABC" is not a scrambled version of "ABC."

  • @Grassmpl
    @Grassmpl 8 หลายเดือนก่อน

    Reminds me of a free group action. All the nonidentity permutations are derangements.

  • @1MooseyGoosey1
    @1MooseyGoosey1 10 หลายเดือนก่อน

    This reminds me of the method to finding the determinant of a matrix, where the terms change positivity, are they related in sime combinatorial way?

  • @save_sudan_and_palestine
    @save_sudan_and_palestine 10 หลายเดือนก่อน +1

    A simplier way to calculate it without Sigma: *[k! - (k)^2 + 1] × (-1)^k*

  • @Scvairy
    @Scvairy 10 หลายเดือนก่อน

    Subfactorial is a number of cyclic shift, isn't it?
    Or with something more than 3 it won't be the case?

  • @ThePullumFamily
    @ThePullumFamily 8 หลายเดือนก่อน +1

    Is there a anti-factorial, like 3¡? Where it's like 3 ÷ 2 ÷ 1? With the formula being n ÷ (n - 1) ÷ (n - 2)... = a?

    • @ManifestedMadness
      @ManifestedMadness 7 หลายเดือนก่อน

      You could just do 1/x! Or if you want to divide the first term by all other terms x^/x!

    • @ThePullumFamily
      @ThePullumFamily 7 หลายเดือนก่อน +1

      @@ManifestedMadness Neat! But since that I think my formula was wrong, I guess.
      Like I used 3 ÷ (3 - 1) ÷ (3 - 2) and got 1.5, but when I used your formula (1/3!) and got 1.666666667.

  • @confidential9692
    @confidential9692 10 หลายเดือนก่อน

    Is there any proof for subfactorial formula,or this formula came out of intuition.

  • @randysmitchell4810
    @randysmitchell4810 9 หลายเดือนก่อน

    How exciting - indeed? And yet, you made it interesting.

  • @bob53135
    @bob53135 8 หลายเดือนก่อน

    If you want to compute it quickly, just round n!/e to the nearest integer. (Which tells you also that a random permutation has about 1/e chances to have no fixed point.)

  • @namon2287
    @namon2287 10 หลายเดือนก่อน +1

    Exciting

  • @RJiiFin
    @RJiiFin 8 หลายเดือนก่อน

    I wonder if there any other videos where there's a figure in the doorway?

  • @CertifiedSkank
    @CertifiedSkank 10 หลายเดือนก่อน

    I haven’t needed to know this since 2002 or something. Why is this so interesting? I won’t need it again until my kid asks me math questions.

  • @mariajose9677
    @mariajose9677 10 หลายเดือนก่อน

    Excellent!!

  • @NaudVanDalen
    @NaudVanDalen 10 หลายเดือนก่อน

    I can't even start to imagine Grahams number factorial.

  • @nastrimarcello
    @nastrimarcello 8 หลายเดือนก่อน +1

    Subfactorials count the derangements of a list of items.
    Derangements are the permutations of the items when each item is out of its original place.
    Lets say you have a list ABCD.
    So a derangement of those items will count the permutations when A is not on first place and B is not on second place and C is not on third place and D is not on fourth place.
    The derangements of ABCD are
    BADC
    BCDA
    CADB
    CDAB
    CDBA
    DABC
    DCAB
    DCBA

  • @IRLtwigstan
    @IRLtwigstan 10 หลายเดือนก่อน +1

    I made this in scratch over summer. Pretty fun project.

  • @thegreenpenquin5647
    @thegreenpenquin5647 9 หลายเดือนก่อน +1

    I was just messing around with this using an online calculator, and it seems like if you do x!/!x it will always get closer and closer to Eulers number. Like 7!/!7 = 2.71… not exactly eulers number but close. Same for 10!/!10. You may have stated this in this video although I thought it was cool!