IMO 2022 - International Mathematical Olympiad | GEOMETRY | PROBLEM 4

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ต.ค. 2024
  • A solution to problem No. 4 (Geometry) of the 63rd International Mathematical Olympiad held in Oslo - Norway is proposed.
    Properties used:
    Triangular congruence.
    Triangular similarity.
    Measure of the external angle as the sum of two measures of internal angles in a triangle.
    Internal and external angles in quadrilaterals.
    Point power (Secanting chords theorem).
    Inscribable quadrilaterals.
    As a curious fact (or maybe not), the 6 students of the Republic of China obtained the perfect score (42 points), this team was made up of:
    Xiaoyu Qu
    7 7 7 7 7 7 42 1 100.00% Gold medal
    Jiayu Liu
    7 7 7 7 7 7 42 1 100.00% Gold medal
    Yubo Liao
    7 7 7 7 7 7 42 1 100.00% Gold medal
    Zhicheng Zhang
    7 7 7 7 7 7 42 1 100.00% Gold medal
    Yiran Zhang
    7 7 7 7 7 7 42 1 100.00% Gold medal
    Cheng Jiang
    7 7 7 7 7 7 42 1 100.00% Gold medal
    Special mention deserves the Peruvian team, which managed to place itself in position No. 19 in the global table, and first place in relation to Latin American countries, with the same accumulated as Brazil.
    The students of the Peruvian team were:
    Diego Coronado
    7 7 2 7 7 3 33 45 92.52% Silver medal
    Yohan Min
    7 7 2 7 7 1 31 68 88.61% Silver medal
    Carla Fermin
    7 7 1 7 7 2 31 68 88.61% Silver medal
    FLOR LUNA
    7 7 2 7 4 0 27 187 68.37% Bronze medal
    Joaquin Guerra
    6 7 1 7 6 0 27 187 68.37% Bronze medal
    Eduardo Aragon
    7 0 2 7 7 1 24 247 58.16% Bronze medal
    Head of the delegation: Jesus Zapata
    Tutor: Jorge Tipe.

ความคิดเห็น • 10

  • @lopezhernandezalexdaniel2727
    @lopezhernandezalexdaniel2727 ปีที่แล้ว +1

    Muy buenas explicaciones, más de estos vídeos. Inunda TH-cam con estos vídeos tan educativos. Todo mi apoyo.

  • @edwardjorgeterres4351
    @edwardjorgeterres4351 2 ปีที่แล้ว +3

    Me agrada tu canal no te rindas. Exitos

  • @marcoantonioaronegrajeda5628
    @marcoantonioaronegrajeda5628 2 ปีที่แล้ว +4

    Excelente solución Maestro...

  • @edwardjorgeterres4351
    @edwardjorgeterres4351 2 ปีที่แล้ว +3

    Felicidades. Siga maestro.

    • @OlympicMaths
      @OlympicMaths  4 หลายเดือนก่อน

      Saludos @edwardjorgeterres4351

  • @matematicasconprofedenis1921
    @matematicasconprofedenis1921 2 ปีที่แล้ว +3

    Excelente DR

  • @martinperu6207
    @martinperu6207 3 หลายเดือนก่อน

    Con libro comienzo para tener base teórica y poder enfrentar estos problemas..

  • @anthonymatute5888
    @anthonymatute5888 2 ปีที่แล้ว +1

    colegio saco oliveros y prolog excelente semilleros y tambien olvidarme acadmia cesar vallejo y bertolt brecht saludos

    • @OlympicMaths
      @OlympicMaths  4 หลายเดือนก่อน

      Genial. Claro que sí.

  • @MariaPerez-ul9dp
    @MariaPerez-ul9dp ปีที่แล้ว

    Cuando llegaste en el minuto 8:56, ya simplemente podrías haber terminado de una forma más sencilla, el ángulo PRS=angPDS-angDSR y angPQS=angCQS-angCQP
    pero PDS=CQS y DSR=CQP por tanto PRS=PQS y ya ahi se demuestra a él cuadrilátero PEQS es cíclico