Lecture 1 | Convex Optimization II (Stanford)

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 ธ.ค. 2024

ความคิดเห็น •

  • @TheMicroDude
    @TheMicroDude 12 ปีที่แล้ว +15

    Awesome lectures. I watched 263, 364a, and 364b. All lectures had relevant material to my research. However, I find Prof. Boyd best when he is sitting down with a notepad handy. The quick divergence talks he gives provide a lot of information not found in any book. The 364b lectures miss this presentation style. I hope Standford re-shoots 364b in the format of 263 and 364a...

  • @jaimelima2420
    @jaimelima2420 3 ปีที่แล้ว

    Thanks for this 'non-causal' presentation. I am sure community really appreciated this effort.

  • @amirishere
    @amirishere 10 ปีที่แล้ว +4

    Thank you for the reenactment of this lecture, and the availability of the rest :).

  • @ttcyt2000
    @ttcyt2000 14 ปีที่แล้ว

    Thanks to Professor Stephen Boyd for his great video.

  • @sohiltri
    @sohiltri 10 ปีที่แล้ว +20

    jump to 16:30

  • @jiaruiwang1609
    @jiaruiwang1609 4 ปีที่แล้ว

    39:32, Professor Boyd said that "the subdifferential of a norm at the origin is the unit ball of the dual norm". But when it comes to 2-norm, 2-norm is differentiable everywhere, so the subdifferential should be a single point. However, the dual norm of 2-norm is still 2 norm, so the unit ball of the dual norm suggests the subdifferential is a set(unit circle) instead. How can this be? Anyone help me with this? Thanks.

    • @vicktorioalhakim3666
      @vicktorioalhakim3666 3 ปีที่แล้ว +2

      You're thinking about the 2-norm squared, which is indeed differentiable everywhere. The same does not hold for the 2-norm, which is the *square root* of the sum of squares. This function when plotted for e.g. R^2 is in fact a circular cone, with a sharp "corner" at 0, and indeed there are an infinite amount of support planes at the origin which globally underestimate the 2-norm, whose unit normal vectors are the subgradients when projected onto R^2. Since the 2-norm of these vectors is at most 1, it is easy to conclude that they are within the unit 2-norm ball.

    • @jiaruiwang1609
      @jiaruiwang1609 3 ปีที่แล้ว

      @@vicktorioalhakim3666 Nice explanation! I did not know that 2-norm is non-differentiable until now😂. Thank you very much!!!

    • @vicktorioalhakim3666
      @vicktorioalhakim3666 3 ปีที่แล้ว

      @@jiaruiwang1609 No problem! (For the sake of completeness, one can also look at the function f(t) = ||tv|| = |t|, where v is a unit vector. Since f is non-diff, so is the 2-norm).

  • @p.z.8355
    @p.z.8355 3 ปีที่แล้ว

    So this is only useful for non-differentiable functions ?

  • @tag_of_frank
    @tag_of_frank 4 ปีที่แล้ว

    How can the textbook be the same, when we went through every chapter in 364A?

  • @yumindou2060
    @yumindou2060 10 ปีที่แล้ว

    Please tell me how to download the Video subtitles, since I am a foreign, only with the subtitles I can catch the class.

    • @MixtheHustlar
      @MixtheHustlar 10 ปีที่แล้ว

      might aswell learn english :)

    • @robinranabhat3125
      @robinranabhat3125 7 ปีที่แล้ว

      werent you taught english in school ?

    • @이효건-o4o
      @이효건-o4o 4 ปีที่แล้ว +2

      @@robinranabhat3125 it is somewhat hard to take lectures smoothly with school-level English

  • @annawilson3824
    @annawilson3824 6 หลายเดือนก่อน

    53:19

  • @natezimmer4489
    @natezimmer4489 8 ปีที่แล้ว

    Lol, you can tell this guy thrill was beyond comprehension to do this dramatic re-enactment of the first day.

  • @archilzhvania6242
    @archilzhvania6242 4 ปีที่แล้ว

    At what level of study is this course taught? PhD or Masters?

  • @vidurjoshi8789
    @vidurjoshi8789 8 ปีที่แล้ว

    Thank you!