Aggvent Calendar Day 19

แชร์
ฝัง
  • เผยแพร่เมื่อ 24 ธ.ค. 2024

ความคิดเห็น • 87

  • @baselinesweb
    @baselinesweb 10 ชั่วโมงที่ผ่านมา +24

    You are making me a genius in my own mind Andy. I couldn't do any of these a month ago. Now I am killing it. Thank you and Merry Merry Christmas to you and everyone here. This is a great Christmas present.

  • @2BadgersBlue
    @2BadgersBlue 12 ชั่วโมงที่ผ่านมา +17

    You can do it Andy, get all the puzzles done in 31 days!
    I applaud the effort and dedication 👏

  • @Doggo2_cool
    @Doggo2_cool 12 ชั่วโมงที่ผ่านมา +32

    Where do you solve your problems?

    • @grahamkay4034
      @grahamkay4034 12 ชั่วโมงที่ผ่านมา +8

      On a piece of paper.

    • @danielcrompton7818
      @danielcrompton7818 11 ชั่วโมงที่ผ่านมา +9

      No, power point.
      He probable made all the slides and just clicks through them

    • @the_nameless_guy
      @the_nameless_guy 11 ชั่วโมงที่ผ่านมา +11

      ​@@grahamkay4034 This has the same energy as
      "- where do you work out"
      "- in the library"

    • @55pm
      @55pm 10 ชั่วโมงที่ผ่านมา +1

      In the ring

    • @XVYQ_EY
      @XVYQ_EY 7 ชั่วโมงที่ผ่านมา +2

      Probably in his room.

  • @cyruschang1904
    @cyruschang1904 12 ชั่วโมงที่ผ่านมา +13

    Answer to the next question:
    Quarter circle and small circle radius = R & r
    (2r)^2 + (12)^2 = R^2
    Shaded area = (πR^2)/4 - πr^2 =
    π[((2r)^2 + (12)^2)/4 - r^2] = 36π

  • @Haver2000000
    @Haver2000000 12 ชั่วโมงที่ผ่านมา +13

    I'm thinking the next one is one of those where it doesn't matter how big the white circle is, the solution will be the same every time, since all we have is a distance of 12 at a random height. So if the area of the white circle is 0, that would make the radius of the quarter circle 12, which leads to the area being 36*pi.

    • @cyruschang1904
      @cyruschang1904 12 ชั่วโมงที่ผ่านมา +1

      12 is less than, not equal to, the radius of the quarter circle
      12 specifies the size of the small circle.

    • @Haver2000000
      @Haver2000000 12 ชั่วโมงที่ผ่านมา +2

      @@cyruschang1904 As the area of the small circle approaches 0, the radius of the quarter circle approaches 12.

    • @cyruschang1904
      @cyruschang1904 11 ชั่วโมงที่ผ่านมา +1

      @@Haver2000000 OK. I see what you’re saying 👌

  • @JenishTheCrafter
    @JenishTheCrafter 5 ชั่วโมงที่ผ่านมา +3

    6 days - 12 puzzles! Let's go Andy we believe in you!

    • @JLvatron
      @JLvatron 4 ชั่วโมงที่ผ่านมา +2

      Even if it goes over into the new year, it’s ok.
      We appreciate Andy’s great work! 🙂

    • @JenishTheCrafter
      @JenishTheCrafter 3 ชั่วโมงที่ผ่านมา

      @JLvatron very well put!

  • @AzouzNacir
    @AzouzNacir 3 ชั่วโมงที่ผ่านมา

    Note that the problem becomes clear when we see that the right triangle whose side length is 12 and whose hypotenuse is R, the radius of the quarter circle, and whose third side is 2r, the diameter of the small circle, is, according to the Pythagorean theorem, (R)²-(2r)²=12², so (πR²)/4-π(2r)²/4=(12²/4)π, i.e. (πR²)/4-πr²=36π, which is the required area.

  • @paullogan9790
    @paullogan9790 12 ชั่วโมงที่ผ่านมา +2

    Merry Christmas Andy. I have enjoyed following you, you make it look so easy.

  • @Skatebordr658
    @Skatebordr658 12 ชั่วโมงที่ผ่านมา +9

    How do we know the green circle touches at the midpoint of the blue semicircle’s base

    • @practicemodebutton7559
      @practicemodebutton7559 12 ชั่วโมงที่ผ่านมา +1

      it just happens to be

    • @0ZkYtEKE
      @0ZkYtEKE 12 ชั่วโมงที่ผ่านมา +4

      That’s a good question. I think if you assume the quarter circle and semicircle touch at exactly one point and fit into a square, then they must touch at the center of the semicircle. But it seems like that is something that should be established.

    • @Epyxoid
      @Epyxoid 12 ชั่วโมงที่ผ่านมา +1

      Every shape is symmetrical in this composition. What's your argument against the symmetry?

    • @ChrisMMaster0
      @ChrisMMaster0 12 ชั่วโมงที่ผ่านมา

      The green a blue circle could be any size and it would still work, pie is just very nice cause it cancels out with the circle area fotmula

    • @cyruschang1904
      @cyruschang1904 12 ชั่วโมงที่ผ่านมา +3

      The right and bottom side of the square are two tangent lines of the semicircle that converge at a right angle (i.e. the lower-right corner of the square). If you connect the center of the semicircle to the point of the convergence, you divide the convergence angle equally (45° - 45°), which means this line coincides with the square’s diagonal.
      The upper-left corner of the square is the center of the quarter circle, So the square’s diagonal is expected to split this quarter circle equally into two.

  • @johnryder1713
    @johnryder1713 12 ชั่วโมงที่ผ่านมา +4

    Happy Christmas Andy and everyone here

  • @ulrik03
    @ulrik03 12 ชั่วโมงที่ผ่านมา +6

    Tomorrow looks like the area is π/4*R²-πr², and you can find a triangle with sides of 12 and 2r, and hypothenuse of R, which gives us R²-(2r)²=12, which leads to the answer being 3π

    • @Epyxoid
      @Epyxoid 12 ชั่วโมงที่ผ่านมา +6

      Almost. It's R² - (2r)² = 12², which leads us to 36π.

    • @ulrik03
      @ulrik03 12 ชั่วโมงที่ผ่านมา +3

      @Epyxoid oh dang. Shame on me for missing that!

    • @danohana1822
      @danohana1822 9 ชั่วโมงที่ผ่านมา

      What triangle?

    • @Epyxoid
      @Epyxoid 8 ชั่วโมงที่ผ่านมา

      @@danohana1822 The one that consists of the radius of the bigger circle that we draw to the right side of the chord, the chord itself, and the line segment between the left side of the chord and the center of the circle, whose length happens to be exactly the diameter of the smaller circle.

  • @Qermaq
    @Qermaq 11 ชั่วโมงที่ผ่านมา +1

    Next one is easy to solve by constructing an example, but here's the proof:
    Radius of 1/4 circle = R, radius of small circle is r. We want ((R^2)/4 - r^2)pi. Connect the center of the 1/4 circle to the other end of the 12 length. Right triangle with legs 2r and 12, hypotenuse R. 4r^2 + 144 = R^2. Divide everything by 4 and move the r^2 term to the right to get 36 = (R^2)/4 - r^2. Since we want ((R^2)/4 - r^2)pi sub 36 in and we get 36pi.

  • @paparmar
    @paparmar 7 ชั่วโมงที่ผ่านมา

    I started by asking myself if the point of tangency of the quarter circle and the semicircle is at the center of the square (it sure looks like if might be, but then of course, you can’t assume that). Following along with the development in the video shows (freeze at 2:38) that it is in fact the case. Thinking some more about why this is true, I came to the conclusion that it follows from the respective areas being the same.
    One can deduce (by equating the areas of a quarter circle with radius s/SQRT(2) and a semicircle with radius s/2) that this common area must be equal to (pi * s^2)/8. So if the common area is given as pi, then s^2 must equal 8, as shown in the video.
    Summarizing: if the area of the two shapes is the same (say A), the area of the square will be 8 * A/pi, and the point of tangency will be the center of the square. Conversely, if the point of tangency is at the center of the square, the two shapes must have the same area, given by (pi * s^2)/8.

  • @SuperQuesty
    @SuperQuesty 5 ชั่วโมงที่ผ่านมา +1

    I love how you say "How exciting" 2 times in the video. How exciting!

  • @KrytenKoro
    @KrytenKoro 6 ชั่วโมงที่ผ่านมา

    Green radius is 2 (pir2/4), blue radius is {2} (pir2/2).
    The distance from where the green contacts the blue to the edge of the square is 2cos45 =2/{2}={2}
    Im assuming the semicircle is symmetrical around the squares axis, which means the squares sides are {2} (green vertical) + {2} (blue vertical) =2{2}
    Then, the area is (2{2})2= 8

    • @KrytenKoro
      @KrytenKoro 6 ชั่วโมงที่ผ่านมา

      Tomorrow's is pi/4*r1^2-pir2^2
      Making a triangle with the displayed segment, (2r2)^2+(12)^2=r1^2
      So the area is pi/4*4r2^2+pi/4*144-pir2^2=36pi

  • @LTG_Lanny
    @LTG_Lanny 9 ชั่วโมงที่ผ่านมา +1

    You could also use the area formula for a rhombus! (d1*d2/2) is all you need once you get the diagonal of 4! (Not 24 haha)

    • @vphilipnyc
      @vphilipnyc ชั่วโมงที่ผ่านมา

      ooo love that solution

  • @NightBenderGD
    @NightBenderGD 10 ชั่วโมงที่ผ่านมา

    You could also multiplyed the 4 by 2(one of the triangle's height, the 4 is the base or in other way the half of the other diagonal) and it gives the same:)

  • @memestrous
    @memestrous 10 ชั่วโมงที่ผ่านมา +1

    I just assumed that the quarter circle crosses the centre, so its radius would be a half-diagonal, and two adjacent half-diagonals form a right triangle with hypotenuse being the side, which comes out to root 8. So the area is 8

  • @MrPhilippos96
    @MrPhilippos96 11 ชั่วโมงที่ผ่านมา

    You can also take the horizontal projection of r1 : r1x= r1 * cos45 = r1 * sqrt(2)/2. Then simply add r1x+r2 = sqrt(2)+sqrt(2) = 2sqrt(2). So the area is (2sqrt(2))^2 = 8.

  • @hashirwaqar8228
    @hashirwaqar8228 11 ชั่วโมงที่ผ่านมา +1

    i got the answer as 36pi . But it seems very unintuitive and now my brain is not braining . HOW EXCITING.

  • @danmimis4576
    @danmimis4576 7 ชั่วโมงที่ผ่านมา

    You didn't explain why the diagonal of the small square is perpendicular on the blue semicircle's diagonal. Happy Holidays!

  • @MartB1979
    @MartB1979 11 ชั่วโมงที่ผ่านมา +1

    Half way through the video it was found that r2 was root2. And we know r2 is half the length of the side of the square. So (2root2)^2 is area = 8. Shaves off a some working by not worrying about the diagonal or r1.

    • @juanignaciolopeztellechea9401
      @juanignaciolopeztellechea9401 10 ชั่วโมงที่ผ่านมา +2

      How do you know that it's half the length of the square's side?
      It is, but that isn't given in the image nor in the text.

    • @danielrutherford9456
      @danielrutherford9456 10 ชั่วโมงที่ผ่านมา

      You would have to assume that because it wasn’t known until he confirmed the diagonal was 4.

    • @MartB1979
      @MartB1979 6 ชั่วโมงที่ผ่านมา

      Sorry, I mean straight after when the diagonal of the small square is confirmed as 2, same size as r1. Then you know r2 is half length of the side of the large square.

    • @juanignaciolopeztellechea9401
      @juanignaciolopeztellechea9401 6 ชั่วโมงที่ผ่านมา

      ​@@MartB1979 but to get that you had to calculate r1 and r2. You didn't skip anything

    • @MartB1979
      @MartB1979 5 ชั่วโมงที่ผ่านมา

      ​@@juanignaciolopeztellechea9401At 2.30 or so he erases the smaller square and calculates the length of the side of the large square by using the newly found long diagonal and pythagoras. But we already know r2 is half length of large square side. That's the only step that can be skipped. It's a very minor point. At 2.30 visually you can see the smaller square is exactly a quarter the size of the large square with the numbers written on the image at that point (the long diagonal is exactly r1 is same length as short diagonal).

  • @rlouisw
    @rlouisw 6 ชั่วโมงที่ผ่านมา

    Can one just assume that the radius of the green quarter circle and diagonal of smaller square are a straight line? It's easy enough to prove if you extend some lines and fill in angles. Otherwise, nice video. I got the same answer in the same manner.

  • @Alpha_Online
    @Alpha_Online 12 ชั่วโมงที่ผ่านมา +1

    How do you know that the green circle has its centre on the vertex of the square?

    • @BowieZ
      @BowieZ ชั่วโมงที่ผ่านมา

      A lot of assumptions are made with this question. The first assumption is that the question is presenting basic shapes, i.e. a quarter and semi-circle (which should answer your question). The second assumption is the circle shapes are placed symmetrically in the square, which means the quarter-circle radius must intersect the semicircle at a perfectly diagonal and symmetrical 45 degree angle.

  • @Kircaldy
    @Kircaldy 12 ชั่วโมงที่ผ่านมา

    An immediate observation is that if pi times something equals pi, that something equals 1. But the first question I asked was, is it true that those given squares are equal, so I would have probably started with proving it. (Unfortunately I'm not a mathematician to go for it.)

  • @bchoor
    @bchoor 2 ชั่วโมงที่ผ่านมา

    Love these Andy. Make it dark instead of white background, helps when watching at night.

  • @Stranglygreen
    @Stranglygreen 11 ชั่วโมงที่ผ่านมา

    wow that was... exciting.. havea good christmas.

  • @Abd_Alrahman_Alsahy
    @Abd_Alrahman_Alsahy 4 ชั่วโมงที่ผ่านมา

    What kind of whiteboard or presentation tool do you use to make demonstration clear like this?

  • @charimonfanboy
    @charimonfanboy 13 นาทีที่ผ่านมา

    36pi
    took me way too long to figure out how to prove it
    area of the quarter circle is piR^2
    area of the circle is pir^2
    you can make a right angled triangle with hypotenuse being R and the other sides being 12 and 2r
    making R^2=12^2+(2r)^2
    so the shaded area=(pi(12^2+(2r)^2))/4-pir^2
    a=144pi/4+(4pir^2)/4-pir^2
    a=36pi+pir^2-pir^2
    a=36pi

  • @andrepizzutodesignprincipl8526
    @andrepizzutodesignprincipl8526 10 ชั่วโมงที่ผ่านมา

    Could have done it another way:
    The width of the square is:
    √2 + √2 = 2√2
    So the area of the square is:
    2√2 x 2√2 = 8 sq.units

  • @justfeeldbyrne2791
    @justfeeldbyrne2791 4 ชั่วโมงที่ผ่านมา

    This was probably the only one i couldve done by myself so far

  • @sphakamisozondi
    @sphakamisozondi 12 ชั่วโมงที่ผ่านมา +1

    I love these Aggvent math puzzles.

  • @Pedritox0953
    @Pedritox0953 11 ชั่วโมงที่ผ่านมา +1

    Merry Christmas 2024!

  • @AKA-f7p
    @AKA-f7p ชั่วโมงที่ผ่านมา

    You missed the rhombus area equation.

  • @MrAkuma-mx2ck
    @MrAkuma-mx2ck 2 ชั่วโมงที่ผ่านมา

    Can’t wait for the next problem

  • @the_andrewest_andrew
    @the_andrewest_andrew 11 ชั่วโมงที่ผ่านมา

    i'm half way through the video and i stopped just to say that i think you only need r2 since it is half the side of the square so the area of the square would be 2*(2*sqrt(2)) which would be 8... did i got it right?
    yei i did 😂

  • @OnlyforstudiesOnlyforstudies
    @OnlyforstudiesOnlyforstudies 11 ชั่วโมงที่ผ่านมา

    Merry christmas andy🫂🧑🏻‍🎄🧑🏻‍🎄💫

  • @daxtonfleming
    @daxtonfleming 12 ชั่วโมงที่ผ่านมา

    Needs more triangles

  • @ignacio391
    @ignacio391 12 ชั่วโมงที่ผ่านมา

    I ALMOST get this one. I was so close T-T

  • @henrygoogle4949
    @henrygoogle4949 12 ชั่วโมงที่ผ่านมา

    Two Pi’s just in time for Xmas Eve dessert.

  • @F4xP4s
    @F4xP4s 10 ชั่วโมงที่ผ่านมา

    Radii crew represent!

  • @devyadav6261
    @devyadav6261 2 ชั่วโมงที่ผ่านมา

    Catching up

  • @gayathrikumar5643
    @gayathrikumar5643 10 ชั่วโมงที่ผ่านมา

    Day 20: 36pi sq units

  • @joeydifranco0422
    @joeydifranco0422 12 ชั่วโมงที่ผ่านมา

    For the next day I got:
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    36*pi

  • @erniesummerfield6472
    @erniesummerfield6472 12 ชั่วโมงที่ผ่านมา

    Hey I was right! Though I absolutely used the wrong(or at least different) equations 😅
    I just figured out the radius of the semi circle to be sqrt(2), and kinda assumed that the center of the diameter was the center of the square(as the 2 points whrere the semi circle touches the square look to be in the center, and also drawing lines inward from them look like the exact center and create a 90⁰ angle), and then I dou led it for the length of the square, being 2sqrt(2), and then squared if to get 8
    Completely wrong method, but hey, it worked

    • @grahamkay4034
      @grahamkay4034 11 ชั่วโมงที่ผ่านมา

      If you calculate the radius of the green circle, this confirms that the base of the blue semi circle lies on the diagonal since its radius matches the diagonal of the smaller square formed by connecting the three tangent points.

  • @tellerhwang364
    @tellerhwang364 9 ชั่วโมงที่ผ่านมา

    day20
    (2r)^2+12^2=R^2
    →r^2+6^2=R^2/4
    →R^2/4-r^2=36→A=36丌😊

    • @tellerhwang364
      @tellerhwang364 9 ชั่วโมงที่ผ่านมา

      option A=丌(12/2)^2=36丌😊

  • @vphilipnyc
    @vphilipnyc 12 ชั่วโมงที่ผ่านมา +1

    Why do we need the green circle? If r2 = sqrt(2), then the length of one side is sqrt(2)+sqrt(2), giving us an area of (2*sqrt(2))^2 = 8.

    • @TimMaddux
      @TimMaddux 11 ชั่วโมงที่ผ่านมา

      You would need something else to define where the top side and left side of the square are located if you don’t have that green quarter-circle.

    • @grahamkay4034
      @grahamkay4034 11 ชั่วโมงที่ผ่านมา

      Don't you need the green quarter circle to establish that the semi circle lies on the square's diagonal?

    • @vphilipnyc
      @vphilipnyc ชั่วโมงที่ผ่านมา

      @@grahamkay4034 Sorry, what I really mean is that there's no need to calculate r1. Alternatively, complete the blue semicircle into a full blue circle. The diameter of that is a side of the square.

  • @pedroamaral7407
    @pedroamaral7407 12 ชั่วโมงที่ผ่านมา

    Next problem: 36*pi

  • @meskinas5278
    @meskinas5278 12 ชั่วโมงที่ผ่านมา

    Nice

  • @thynedewaal1823
    @thynedewaal1823 12 ชั่วโมงที่ผ่านมา

    hi

  • @Piggels
    @Piggels 5 ชั่วโมงที่ผ่านมา

    recycle these notes??
    ...

  • @blackholegamer9
    @blackholegamer9 12 ชั่วโมงที่ผ่านมา

    fourth ig