Square root of ANY number instantly - no calculator!

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 ธ.ค. 2024

ความคิดเห็น • 17

  • @funion6947
    @funion6947 6 วันที่ผ่านมา +1

    cant you just use linear approximation instead. It works for not only square roots but anything

  • @ansarmiah6049
    @ansarmiah6049 8 วันที่ผ่านมา +1

    Its very smart but how do we het the closest perfect suare root quickly?

    • @rikschaaf
      @rikschaaf 6 วันที่ผ่านมา

      @@ansarmiah6049 Learn the first 20 square roots and then approximate anything higher by dividing the input by 100 and multiplying your pre-correction answer by 10 (since sqrt(100) = 10). So for sqrt(1629) ≈ sqrt(16*100) = 4*10 = 40. 1629-1600 = 29, so the approximation from this video would be 40+29/80. It wouldn't surprise me if the trick still works if it's not exactly the closest square, but it's probably a bit less accurate the farther the square you use is from the number you're trying to sqrt.

    • @rikschaaf
      @rikschaaf 6 วันที่ผ่านมา

      @@ansarmiah6049 Let's say I didn't know 62^2 = 3844, calculating sqrt(3844) ≈ sqrt(36*100) = 6*10 = 60 and 3844-3600 = 244, so after the correction I get 60 + 244/120 ≈ 62.03. So you see that it even works if you don't use the closest square. You just need one that is relatively close.

    • @rikschaaf
      @rikschaaf 6 วันที่ผ่านมา

      It also works for a negative correction: 59^2 = 3481. Let's say we didn't know that, using the technique we get sqrt(3481) ≈ sqrt(36*100) = 60 and 3481 - 3600 = -119, so after the correction, we get 60 + (-119/120) = 60 - 119/120 ≈ 59.01

    • @ansarmiah6049
      @ansarmiah6049 2 วันที่ผ่านมา

      @rikschaaf thanks

    • @rikschaaf
      @rikschaaf 2 วันที่ผ่านมา

      @@ansarmiah6049 Using that approximation can be somewhat imprecise for larger numbers, but you can apply the correction multiple times to make it more precise:
      Lets consider 545^2 = 297025.
      Assuming we didn't know that:
      Sqrt(297025)≈sqrt(36*10000) = 600
      297025 - 360000 = -62975
      1st approximation gives: 600 - 62975/1200 = 550 - 2975/1200 = 548 - 575/1200, so let's roughly say 548
      548^2 = 300304
      297025 - 300304 = -3279
      2nd approximation gives: 548 - 3279/1096 = 546 - 1087/1096 ≈ 545.01

  • @vespa2860
    @vespa2860 7 วันที่ผ่านมา

    Very good

  • @bompinghead9865
    @bompinghead9865 7 วันที่ผ่านมา +1

    Why does this method work though?

    • @skyler-pg4op
      @skyler-pg4op 7 วันที่ผ่านมา

      @@bompinghead9865 it's differential calculus
      Method of approximation to be exact. Differential is used to approximate the values of different things and one of them is squares.

    • @lightyagami1752
      @lightyagami1752 6 วันที่ผ่านมา +1

      Let me try to help. Let's say you have a perfect square x², with x being a natural number. Now you have an imperfect square (x+a)² where a is an irrational number such that 0

  • @twiceteencaratonce2532
    @twiceteencaratonce2532 9 วันที่ผ่านมา

    Ok thats smart

  • @rikschaaf
    @rikschaaf 6 วันที่ผ่านมา +1

    I didn't really learn anything, because you didn't explain WHY it works. All this video is, is teaching a dog some tricks.

    • @lightyagami1752
      @lightyagami1752 6 วันที่ผ่านมา +2

      Let me try to help. Let's say you have a perfect square x², with x being a natural number. Now you have an imperfect square (x+a)² where a is an irrational number such that 0

    • @spectrumjitters4672
      @spectrumjitters4672 6 วันที่ผ่านมา +1

      It's because it's calculus. You can find the approximate difference.
      Dx or dy = difference in x or y
      y' is the derivative of y, or the slope
      Dy=y' * dx
      Let y=f(x)=sqrt(x)
      In this case, y' = 1/(2*sqrt(x))
      dy = dx/(2*sqrtx)
      Let x be 25 and dx be 2 to represent sqrt(27
      dy=2/(2*sqrt25)
      dy=1/5
      sqrt27≈sqrt(25)+1/5
      ≈5.2
      Sqrt27=5.19
      Good approximation