A cool integral for Apery's constant (ζ(3)): int 0 to 1 (x(1-x))/sin(πx)

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 พ.ย. 2024

ความคิดเห็น • 40

  • @The1RandomFool
    @The1RandomFool ปีที่แล้ว +11

    Before watching the video, the substitution I made was pi/2*x = u, then used the double angle formula for sin in the denominator of the integrand. In the numerator, I used the fact that sin^2 u + cos^2 u = 1, then integrated by parts.

    • @monikaherath7505
      @monikaherath7505 ปีที่แล้ว

      Could you write it out please I don't understand how you got to sin^2 u + cos*2 u

    • @The1RandomFool
      @The1RandomFool ปีที่แล้ว

      sin^2 u + cos^2 u = 1 is a basic trigonometric identity. In general, it's a strategy to cancel out a product of sines and cosines in the denominator by setting 1 = sin^2 u + cos^2 u in the numerator.@@monikaherath7505

  • @CamiKite
    @CamiKite 10 หลายเดือนก่อน +2

    Using Euler reflexion formula you can also show that 7ζ(3)/pi^2 = integral(gamma(3/2-x)*gamma(3/2+x)) from -1/2 to 1/2. It doesn't help to integrate, but it's beautiful ;-)

  • @carlosgiovanardi8197
    @carlosgiovanardi8197 ปีที่แล้ว +3

    GREAT!! An interesting class of integrals: integrate from 0 to 1 [ x^n (1-x)^m / sin(πx)].

  • @manstuckinabox3679
    @manstuckinabox3679 ปีที่แล้ว +1

    Bro was like LOL do it by parts and stuff but really didn't bother by going the distance, great video as always brother.

    • @maths_505
      @maths_505  ปีที่แล้ว

      Thanks mate. I've been looking for an integral to use that series on

  • @MrWael1970
    @MrWael1970 ปีที่แล้ว

    Thank you for this innovative integration. Smart solution.

  • @bigbrewer3375
    @bigbrewer3375 2 หลายเดือนก่อน

    damn, maths in 4k is fancy

  • @gjjkhjkk9241
    @gjjkhjkk9241 5 หลายเดือนก่อน +1

    Hi, use the properties of the gamma function like is relation to 1/sin(x.pi) and x(x-1)

  • @quentinrenon9876
    @quentinrenon9876 ปีที่แล้ว +1

    Nice one ! I now challenge you to solve the integral from 0 to pi of x * (sinx)^n dx. It took me around an hour or 2 to solve and is absoluetly gorgeous

    • @grigoriefimovitchrasputin5442
      @grigoriefimovitchrasputin5442 ปีที่แล้ว +1

      Thanks ! It looks interesting to solve

    • @quentinrenon9876
      @quentinrenon9876 ปีที่แล้ว

      @@grigoriefimovitchrasputin5442 Tbh it's not too difficult but you need to be creative, normal methods don't work. Or at least I couldn't get very far using them

    • @grigoriefimovitchrasputin5442
      @grigoriefimovitchrasputin5442 ปีที่แล้ว

      @@quentinrenon9876 it looks like Wallis integrals, except that there is a x. Anyway, i'll give it a try

    • @alarka1782
      @alarka1782 ปีที่แล้ว

      I think by applying property of integral, it breaks into pi * integral 0 to pi/2 (sin x) ^ n dx. Should be easy from there to express in terms of gamma function.

    • @ガアラ-h3h
      @ガアラ-h3h ปีที่แล้ว

      Should be doable by integrating by x = sqrt(x) then u = x/2 and then letting u be sin x which leads to a structure very similar to the beta function can’t rlly go further because I have no pen rn

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว

    Corretto, ❤ho usato sinx, formula esponenziale, poi la serie geometrica... Anche se a me risulta un segno -... Ah ah, al primo colpo non mi viene mai... Ok, il segno - è scomparso... Is correct

  • @trelosyiaellinika
    @trelosyiaellinika 2 วันที่ผ่านมา

    Exhilaratingly beautiful!

  • @gregsarnecki7581
    @gregsarnecki7581 ปีที่แล้ว

    Awesome integral!

  • @KalininEvgen
    @KalininEvgen ปีที่แล้ว +1

    It looks like it can be generalised. If n=3, then ans can be written as (2n+1)zeta(n)/pi^{n}. May be exist some types of integrals which are generalised that way?

    • @austin4768
      @austin4768 8 หลายเดือนก่อน

      Yes I’m also curious if there are analogous formulas for zeta of odd (or even all) n. One can go try to go back through the calculation and find a point where the integrand can be tweaked in such a way to yield this kind of formula. I’m too lazy to do this right now though

  • @julianwang7987
    @julianwang7987 ปีที่แล้ว

    Isn't the essence of the proof the following Fourier Expansion for csc(x) = 2 SUM_odd (sin(nx))?

  • @PhilesArt
    @PhilesArt ปีที่แล้ว

    cr7 fan here too xD, loved that one 👍

    • @maths_505
      @maths_505  ปีที่แล้ว

      SUIIIIIIIIIIIIIIIIIIIII

  • @physicsiseasy2623
    @physicsiseasy2623 ปีที่แล้ว

    I love your solution though I don't understand one of your solution. I'm an A level student.😊

    • @maths_505
      @maths_505  ปีที่แล้ว

      Oh cool....I used to tutor A level students.....
      Thanks bro....you'll understand them all pretty soon cuz you'll study the basics in your A levels....then you'll solve these integrals and DEs on your own.

  • @bartekabuz855
    @bartekabuz855 ปีที่แล้ว +5

    Bring back dark thumbnail 1/4

  • @natepolidoro4565
    @natepolidoro4565 ปีที่แล้ว

    Didn't go the way I thought

  • @damrgee8279
    @damrgee8279 ปีที่แล้ว +1

    How is this applied to every day life?

    • @insouciantFox
      @insouciantFox ปีที่แล้ว +11

      Integrals are everyday life

    • @daddy_myers
      @daddy_myers ปีที่แล้ว +9

      Integrals are life.

    • @damrgee8279
      @damrgee8279 ปีที่แล้ว

      @@daddy_myers example please

    • @daddy_myers
      @daddy_myers ปีที่แล้ว +8

      @@damrgee8279 Your question alone indicates you could use more integrals in your daily life.

    • @damrgee8279
      @damrgee8279 ปีที่แล้ว

      @Jacques-kc4qy it’s amazing that people like yourself are incredibly smart when it comes to this stuff I don’t understand any of it, But yet when it comes to political leanings regarding logic and common sense we have some of the stupidest people on the planet