the hardest integral from the BMT integration bee

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 ม.ค. 2025

ความคิดเห็น • 241

  • @blackpenredpen
    @blackpenredpen  ปีที่แล้ว +9

    The Fall 2023 Berkeley Math Tournament will be held on the UC Berkeley campus on Saturday, Nov. 4th and I will be there! For more info and registration, check out berkeley.mt/events/bmt-2023/.

  • @BradleyG01
    @BradleyG01 2 ปีที่แล้ว +653

    This is why I love this channel. Takes an integral that, quite frankly, almost makes me wanna cry, and turns it into something where I just need to brush up on infinite series to understand.

  • @-.SkyArt.-
    @-.SkyArt.- ปีที่แล้ว +33

    Looks so complex yet it’s so simple! Thanks for the tutorial, you never disappoint. 😊

    • @blackpenredpen
      @blackpenredpen  ปีที่แล้ว +3

      Thanks!

    • @-.SkyArt.-
      @-.SkyArt.- ปีที่แล้ว +3

      @@blackpenredpen No problem! Also I wanted to point out that I’ve been watching you for a while now and never expected you to see any of my comments, let alone reply to one! Thanks so much for replying, it made my day ❤️

  • @roastedchicken5197
    @roastedchicken5197 2 ปีที่แล้ว +714

    I’m laughing when he said “I know this has the N but that’s ln” his facial expression and the way he delivered is killing me😂.

    • @wallace7815
      @wallace7815 2 ปีที่แล้ว +9

      Same

    • @blackpenredpen
      @blackpenredpen  2 ปีที่แล้ว +62

      Lol😂

    • @kiss6917
      @kiss6917 2 ปีที่แล้ว +4

      HAHAA
      SAMEE

    • @parikshitkulkarni3551
      @parikshitkulkarni3551 2 ปีที่แล้ว

      😂

    • @chovie
      @chovie ปีที่แล้ว +3

      Ya, and what makes it extra funny to me is that these types of jokes he makes might have come from IRL mistakes he saw at some point :D

  • @maitland1007
    @maitland1007 2 ปีที่แล้ว +238

    That was fun. Thanks. I thought it was interesting that the integral itself wasn't that hard, but rather the simplification of the series. Have you ever thought about getting refillable pens? They work great.

  • @Hamza_Khan_Journey
    @Hamza_Khan_Journey 2 ปีที่แล้ว +46

    One of most unique integrals I’ve seen in a while

  • @bowenjudd1028
    @bowenjudd1028 2 ปีที่แล้ว +44

    I wouldn't have been able to do this on my own, but man is this one satisfying

  • @blackpenredpen
    @blackpenredpen  2 ปีที่แล้ว +145

    I did this integral after 100 integrals lol
    full video th-cam.com/video/jQz1gQ24OHc/w-d-xo.html

  • @mathsrelated
    @mathsrelated ปีที่แล้ว +5

    🤣🤣7:49.... He has done his work & there's no reward except this mad behavior.

  • @EPMTUNES
    @EPMTUNES 2 ปีที่แล้ว +90

    I love your videos. Over the years you’ve always been so helpful, so direct, and so charismatic. Even if I don’t understand what’s happening it’s still entertaining. Thank you

  • @shrayanpramanik8985
    @shrayanpramanik8985 2 ปีที่แล้ว +14

    Feels great to be able to solve it while being in high school.
    Thanks bprp.
    You started my year old obsession with integrals🙇‍♂️.

  • @Starlight-sc4bp
    @Starlight-sc4bp 2 ปีที่แล้ว +23

    I passed the hardest topics in Calculus thanks to you. Love how detailed your videos are.

  • @joyis9638
    @joyis9638 2 ปีที่แล้ว +19

    That was fun! I have not done calculus classes since 1980 as a mathematics major but I could follow this! Great work and explanations!

  • @qillerdaemon9331
    @qillerdaemon9331 2 ปีที่แล้ว +5

    7:50 "And that's a good place to stop."

  • @puh8825
    @puh8825 2 ปีที่แล้ว +9

    It's so simplistic and beautiful, what an awesome integral

    • @puh8825
      @puh8825 2 ปีที่แล้ว +6

      On a side note, we would be screwed if we didn't have Euler's symbol

  • @frendlyleaf6187
    @frendlyleaf6187 4 หลายเดือนก่อน +1

    My solution went basically the same as yours though figuring out everything took like 45mins , I'm just glad I was actually able to do one of these more advanced integrals.

  • @ahmed_hydrogen863
    @ahmed_hydrogen863 ปีที่แล้ว +1

    Bro didn't know how to solve the integration
    He is the integration

  • @eitancahlon
    @eitancahlon 2 ปีที่แล้ว +2

    It is probabbly the most beautiful integral I've ever seen.

  • @nirajabcd
    @nirajabcd 2 ปีที่แล้ว +92

    Not doing maths anymore but it is a sheer joy to watch you doing all these interesting problems

    • @AT-zr9tv
      @AT-zr9tv 2 ปีที่แล้ว

      Same here. His joy is relatable, for 20-year old me.

  • @freedomofmusic2112
    @freedomofmusic2112 2 ปีที่แล้ว +3

    EXCELLENT VIDEO, thank you for this. I struggled so much with infinite series, it's nice to see a fairly practical application of it to solve an incredibly difficult problem

  • @mohammadaminbanaei9237
    @mohammadaminbanaei9237 2 ปีที่แล้ว +13

    And even better, e - 1/e is W^-1(1) + W^-1(-1)
    W(x) is the lambert W function

  • @ABruckner8
    @ABruckner8 2 ปีที่แล้ว +4

    My first instinct was "this probably simplifies to some kind of summation involving e," but I have no clue how to get there, lol.

  • @tomodachi1644
    @tomodachi1644 2 ปีที่แล้ว +10

    Crazy how I know all the tools he used and still I coudn't solved it myself.

  • @janitorvoniserlohn
    @janitorvoniserlohn 2 ปีที่แล้ว +1

    Let y = f(x), where f(x) is the integrand.
    Then after some tedious manipulation one has
    ln y =-1 + e^(ln x) = -1+ x
    So
    y = e^(x-1)
    The integration can be simplified as
    Integrate[e^t, {t, -1, 1}] = e^t, {t, -1, 1} = e - e^(-1)
    Hence,
    Integrate[f(x), {x, 0, 2}] = e - 1/e.

  • @augustus5169
    @augustus5169 2 ปีที่แล้ว +8

    I am currently learning series and sequences in high school and this was so cool to see!

    • @kpax9284
      @kpax9284 ปีที่แล้ว

      you have series and sequences in Highschool curriculum? Isn’t it college level?

    • @tinyeragon7132
      @tinyeragon7132 ปีที่แล้ว

      @@kpax9284 its taught in AP bc calc, taught in high school

    • @lincolnwithrow8951
      @lincolnwithrow8951 ปีที่แล้ว

      @@kpax9284 Pre-calc junior year most likely.

  • @allegrobas
    @allegrobas ปีที่แล้ว +1

    I burned 1 billion brain cells trying to understand this monster integral, and failed.

  • @kingarth0r
    @kingarth0r 2 ปีที่แล้ว +6

    Very fun integral, adding it to the list!

  • @EliteCubingAlliance
    @EliteCubingAlliance ปีที่แล้ว +3

    This is such an easy solution when you see someone else do it, but I would have never solved it by myself!

  • @alexander1989x
    @alexander1989x ปีที่แล้ว

    Gotta love when things cancel out and you get a neat and manageable solution.

  • @rybosny
    @rybosny 2 ปีที่แล้ว +11

    One of the best integrals I've ever seen. :)

  • @misinagy983
    @misinagy983 2 ปีที่แล้ว +2

    THAT WAS AWESOME! thanks bprp :)

  • @michaellarson2184
    @michaellarson2184 2 ปีที่แล้ว +2

    I solved it without watching the video! I feel so proud!

  • @AlessandroLanguasco
    @AlessandroLanguasco 8 วันที่ผ่านมา

    There are two problems in this solution; the first is the main one, the second is less important. (log is the natural logarithm in the following) First: the integration range is [0,2] but log(x) is defined for x> 0 only; so, strictly speaking, one needs to consider the convergence problem at x_0=0 from the right. So one has to take care of this problem. A possibility is to modify the problem, working , for example in [1/2,2]. Another one is to obtain the antiderivatives only for x>0 (all the computations here hold only for x>0) and then extend the definition of the integrand function to 0. Second: at some point, a factor 1/(log x) is used and this can be done for x different from 1 only (because log(1)=0 and we cannot divide by 0). This way of arguing is a problem for the modified integration range too. So, one should split the integration range in the sub intervals [1/2,1] and (1,2] and then “glue” together the two anti derivative functions that one gets. Since such two intervals are disjoint, this means that one should carefully choose the “arbitrary ” constants involved in the two antiderivatives obtained. The problem, though, can be easily fixed by avoiding to divide by log x.

  • @理論派の男
    @理論派の男 2 หลายเดือนก่อน

    Well , that's probably my new favorite integral in pure mathematics.

  • @marius4363
    @marius4363 ปีที่แล้ว

    this is a beautiful one , like after seeing how its done it dosen't seem hard but it would probably take me days before actually seeing the Maclaurin Series for e^x with the ln x being there, props to the guys that found this beauty

  • @doma3554
    @doma3554 ปีที่แล้ว

    The way he speaks softly and calmly, and is reassuring, reminds me of Steve from Blues Clues, except with integrals. :B

  • @jtgurney4556
    @jtgurney4556 ปีที่แล้ว +2

    Me watching this as an 8th grader and not knowing calculas; hmm interesting

  • @randyla6706
    @randyla6706 ปีที่แล้ว +3

    To the folks who want a more compact form: 2sinh(1). The hyperbolic sin function.

  • @spaghetti1383
    @spaghetti1383 2 ปีที่แล้ว +32

    Integrals like this are rarely hard. They are just time consuming because they require a bit of algebra. Once you simplify the integrand by knowing a power series, there are no integration techniques required. This problem is more like a race than a puzzle. But that's what most bee integrals are. You can't put many genuinely difficult integrals in an integral bee because of the format.

  • @binaryhaze-fm6lk
    @binaryhaze-fm6lk 2 ปีที่แล้ว +1

    Amazing mathmatical thought!using known theory to present unknown situation,for example we have learned the sum of x divided by n! is e to the power of x,then lnx is e to the power of lnx which means x,that simplified this question a lot! I 've learned a lot via watching your video!

  • @theupson
    @theupson 7 หลายเดือนก่อน

    if you convert each x (in the bases) to e^lnx, the series you get requires less finagling, as the power of lnx matches the index of the respective factorial

  • @mohammadalkousa2856
    @mohammadalkousa2856 ปีที่แล้ว

    Really Integration Bee very interesting.
    Thanks for video.
    For MIT integration bee recently it was published a book with solutions to problems of Qualifying Tests from 2010 to 2023

  • @ravikumargautam72
    @ravikumargautam72 2 ปีที่แล้ว +3

    This is incredible solution 👍

  • @utuberaj60
    @utuberaj60 2 หลายเดือนก่อน

    That was pure magic Steve.❤

  • @jedhcurtis1148
    @jedhcurtis1148 ปีที่แล้ว

    This is just beautiful!!! Love your work!!

  • @Peter_1986
    @Peter_1986 2 ปีที่แล้ว +2

    Integrating like a boss.

  • @rhversity5965
    @rhversity5965 2 ปีที่แล้ว +34

    Hello Professor. I applied to UC Berkeley this year so I might see you on campus next year if I get in. If I do I’ll definitely join the Berkeley math tournament.

    • @blackpenredpen
      @blackpenredpen  2 ปีที่แล้ว +16

      I don’t teach at UC Berkeley. I live in the SoCal area but I go back to UCB campus whenever I can 😃

    • @rhversity5965
      @rhversity5965 2 ปีที่แล้ว +2

      @@blackpenredpen Oh. Where do you teach then?

    • @BenDover69831
      @BenDover69831 ปีที่แล้ว +1

      @@rhversity5965 he teaches in kenya

  • @stringtheory5892
    @stringtheory5892 2 ปีที่แล้ว +3

    Integral from 0 to 1
    f(x)=2^[(logx)]
    Where [ . ] denotes the greatest integer function.
    Note: it is logx with base 2.

    • @youngmathematician9154
      @youngmathematician9154 2 ปีที่แล้ว +2

      Here's how I did it:
      1. Make the substitution u=log_2(x). This gives x=2^u => dx=2^u*ln(u)du. The bounds become -inf to 0. Our integral then becomes Integral(-inf to 0)(2^[u]*2^u*ln(2))du=ln(2)*Integral(-inf to 0)(2^[u]*2^u)du
      2. Rewrite the integral as an infinite sum of smaller integrals. We are going to do so the following way:
      ln(2)*(Integral(-1 to 0)(2^[u]*2^u)du+Integral(-2 to -1)(2^[u]*2^u)du+Integral(-3 to -2)(2^[u]*2^u)du+…)
      =ln(2)*Sum(k=-inf to -1)(Integral(k to k+1)(2^[u]*2^u)du).
      The key insight here lies in the definition of the greatest integer function: for some integer k, [x]=k iff k

  • @freedomofmusic2112
    @freedomofmusic2112 2 ปีที่แล้ว +3

    I'm a math tutor at my college, I gotta practice that two pen technique! I love using different colors when I'm helping students.

  • @SatyaVenugopal
    @SatyaVenugopal 2 ปีที่แล้ว +2

    This is glorious!

  • @somebodysomewhere4670
    @somebodysomewhere4670 ปีที่แล้ว

    You could also use expansion of taylor series of e^x (its n-th derivative is always e^x) so that sum of those powers of x equals (x-1)/lnx and then substitute it back into the integral. Thats how i got it. Sorry for my english.

  • @gewinner3455
    @gewinner3455 ปีที่แล้ว

    Amazing video! So much fun to watch!

  • @sunnyjha11
    @sunnyjha11 ปีที่แล้ว

    I used to be able to solve questions of this difficulty level 10 years ago. I forgot most of the things and only remember some basic integral and derivatives formulas and concepts now :P Anyway this was cool to watch :)

  • @TechyMage
    @TechyMage 2 ปีที่แล้ว +2

    7:50 when u forget u r mathematician not martial artist.

  • @william8264
    @william8264 17 ชั่วโมงที่ผ่านมา

    This guy is a genius

  • @phoenixspirit6014
    @phoenixspirit6014 2 ปีที่แล้ว +1

    Goddamn was that a beauty of an equation

  • @champu823
    @champu823 ปีที่แล้ว

    I Didn't expect to solve this myself in 5min lol

  • @manojsurya1005
    @manojsurya1005 ปีที่แล้ว

    That was a beautiful solution,clever

  • @agytjax
    @agytjax ปีที่แล้ว +2

    Despite having more than a 1M subscribers, why does he still continue to hold the mic 🤔

  • @marcusviniciusdoprado7508
    @marcusviniciusdoprado7508 ปีที่แล้ว

    What a beatiful integral and mathematics!

  • @haaansolo8568
    @haaansolo8568 2 ปีที่แล้ว +1

    This was a fun one!

  • @راميعلي-ض9ج
    @راميعلي-ض9ج 2 ปีที่แล้ว

    The braingasm at the end

  • @Master_mind__235
    @Master_mind__235 2 ปีที่แล้ว

    In √-1 put e^iπ and take out the root of -1

  • @aiden_villa
    @aiden_villa 2 ปีที่แล้ว +1

    I didn’t understand any of that but it was entertaining

  • @pepe60735
    @pepe60735 2 ปีที่แล้ว +1

    Fun. watching these videos make you learn methods to solve problems.

  • @gatjuatwicteatriek4590
    @gatjuatwicteatriek4590 2 ปีที่แล้ว +2

    You deserve 500m subscribers

  • @brazenzebra
    @brazenzebra ปีที่แล้ว

    Beautiful! So easy to follow along with your argument. But, to come up with it on my own? Sheesh, it would take me months, maybe infinite months!

  • @jaymincorn4379
    @jaymincorn4379 หลายเดือนก่อน

    Wtf
    It seems so easy when I've seen the solution but I could never think of this during a competition

  • @MrUberlyuber
    @MrUberlyuber ปีที่แล้ว

    I love your content man. Now that I’ve solved it it seems almost trivial - of course it’s just an infinite series, :p

  • @octopuskeng
    @octopuskeng 2 ปีที่แล้ว +3

    Amazing !

  • @idk39381
    @idk39381 2 ปีที่แล้ว +1

    the laugh at the end...

  • @manavrana225
    @manavrana225 ปีที่แล้ว

    Before the Solution :
    Integral is easier but that series to be formed is main thing which is like (2^n)/(n^2)

  • @CravenMaaaaaaaaa
    @CravenMaaaaaaaaa 2 ปีที่แล้ว

    this dude can quick-select between a red and blue whiteboard marker

  • @monishrules6580
    @monishrules6580 8 หลายเดือนก่อน

    Thats such a cool question

  • @AayushSrivastava0307
    @AayushSrivastava0307 2 ปีที่แล้ว +1

    pretty easy ngl did it as soon as i thought of writing the radicals in terms of powers and the x^a must been some series expansion :)

  • @hasanyaser2524
    @hasanyaser2524 ปีที่แล้ว +1

    You could have removed the X from the base and replaced it with e to the power of ln(x)

  • @YakshBariya
    @YakshBariya ปีที่แล้ว +1

    Oh great question, not that difficult btw. I thought it would require some sort of wizardry, but when I wrote the question and simplified to the power of x, I quickly saw e^ln x, just needed to multiply and divide by ln x and create the e^x series, then it was pretty simple :)
    Once again, a great and simple question which emphasizes on finding patterns

  • @faheem5600
    @faheem5600 2 ปีที่แล้ว +1

    Sir I m ur die hard fan Really amazing content delivered

  • @luigigg1741
    @luigigg1741 2 ปีที่แล้ว

    Love even the Klein bottle behind you!

  • @ThAlEdison
    @ThAlEdison 2 ปีที่แล้ว

    I needed a u substitution, e^u=x. To see the pattern, but when I got to e^(e^u+u-1)du, I converted back to the x world.

  • @mathmagic8577
    @mathmagic8577 2 ปีที่แล้ว +2

    How to find the sum of these series (Nc0)³+(Nc1)³+(Nc2)³+....+(NcN)³.is it possible?

  • @harstoft
    @harstoft 2 ปีที่แล้ว

    Calculus is so fascinating

  • @maddenom
    @maddenom ปีที่แล้ว +1

    This was an easy problem, (no offense), but the first thought in my mind was trying through u-substitution but I guess it would be easier to use Taylor series for defining e
    I mean it was pretty tough for some speed solving like an integration bee, but problems like these make you know about the essence of series...

  • @Arthur_06
    @Arthur_06 2 ปีที่แล้ว

    Making of the thumbnail........this guy....give me that fucking medal 🏅

  • @swaggyseth1454
    @swaggyseth1454 2 ปีที่แล้ว

    HES POPPUNG OFF

  • @mohamedsamir9527
    @mohamedsamir9527 2 ปีที่แล้ว

    Perfect as always 👏👏

  • @neypaz8054
    @neypaz8054 2 ปีที่แล้ว

    I was missing your videos. =)

  • @ItsPungpond98
    @ItsPungpond98 2 ปีที่แล้ว

    Mom! A new bprp is here!

  • @piotrskalski1477
    @piotrskalski1477 2 ปีที่แล้ว

    When I saw tis thumbnail, I thought the answer was Nepal

  • @davidbass5115
    @davidbass5115 2 ปีที่แล้ว

    so my friend gave me this equation and I found the real solution, which is x=2. I was wondering how to find the complex solutions to it if there are any.
    the equation is x^x^3=256

  • @jatinkapoor15
    @jatinkapoor15 2 ปีที่แล้ว

    I did this on my own just messed up a lil in the last . yay

  • @UnrealMatter
    @UnrealMatter 2 ปีที่แล้ว +1

    Please do the derivation of ln(-1)

  • @ren5124
    @ren5124 2 ปีที่แล้ว

    Can someone explain how modifying the series equation to fit ln(x) get a +1 for n = 0. 4:32

    • @diegocabrales
      @diegocabrales ปีที่แล้ว

      Let S^j be the sum from n = j to ∞ of (x^n)/n!, i.e.,
      S^j = (x^j)/j! + [x^(j + 1)]/(j + 1)! + ... + (x^n)/n! + ...
      Note that j is not an exponent but a way to say that the sum starts at some value j of n.
      Note also that the sum after (x^j)/j! is just S^(j + 1), so we have that
      S^j = (x^j)/j! + S^(j + 1)
      The sum we want is the Maclaurin series of e^x (just the series for e^x that appears in the video), so j = 0 and then we have that
      S⁰ = (x^0)/0! + S¹
      Now, x^0 = 1 and 0! = 1, so (x^0)/0! = 1/1 = 1 and then we have that
      S⁰ = 1 + S¹

  • @nouhznibi2297
    @nouhznibi2297 ปีที่แล้ว +1

    Your are the best bro 👍

  • @matteocilla9482
    @matteocilla9482 2 ปีที่แล้ว +1

    and it is possible to find a primitive of this function?

  • @dhruvbhola9073
    @dhruvbhola9073 ปีที่แล้ว

    He is a jewel

  • @sumedh-girish
    @sumedh-girish 8 หลายเดือนก่อน

    You could have started the power series from 0 as it already had the ln^0 x term, I feel it would have reduced some work. Amazing video as always...

  • @TheRedbeardster
    @TheRedbeardster 2 ปีที่แล้ว +2

    I've never managed to find big enough square root in my garden. Thanks!

  • @rehmatullahkhan8969
    @rehmatullahkhan8969 2 ปีที่แล้ว

    Good job sir black 👍

  • @DaniBerna6336
    @DaniBerna6336 2 ปีที่แล้ว

    You are the best! 🔥🔥🔥