What are Convolutional Neural Networks (CNNs)?

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ม.ค. 2025

ความคิดเห็น • 151

  • @sunnygan90
    @sunnygan90 3 ปีที่แล้ว +210

    Unbelievably clear and succinct explanations

    • @IBMTechnology
      @IBMTechnology  3 ปีที่แล้ว +24

      Thanks for the appreciation, Sunny, that's what we strive for! 🙂

    • @JockGeez
      @JockGeez ปีที่แล้ว +1

      Well said

    • @Baileyreads10
      @Baileyreads10 5 หลายเดือนก่อน

      L.
      .
      מצורף .
      ...
      ❤, . מחלת תינו​@@JockGeez

  • @arrahul316
    @arrahul316 2 ปีที่แล้ว +25

    The intro just rocked, as to why CNN. "Humans can do object detection quickly and machines can't" and hence that's where it begins. Amazing... Thanks...

  • @ameridev
    @ameridev 2 ปีที่แล้ว +30

    Explained in a very simple way that's easy to understand! Great video!

  • @rdbnair1445
    @rdbnair1445 2 ปีที่แล้ว +16

    Have been watching several videos to get a high level understanding of CNN, but no luck. However, this is a very good explanation ! Cleared lots of doubt in few minutes. Thank you

  • @jiajunmak4039
    @jiajunmak4039 3 ปีที่แล้ว +17

    Bro this dude just wrote mirrored wth. Also thanks for the video! The concept of CNN is a lot more clear to me now. :))

    • @IBMTechnology
      @IBMTechnology  3 ปีที่แล้ว +12

      Glad this was useful to you! 👍 As for writing mirrored, here is how we do it 👉 ibm.co/3jnq1st 😉

  • @pellythirteen5654
    @pellythirteen5654 2 ปีที่แล้ว +28

    In my eyes , the goal of Convolution is to make the signal invariant to scaling and translation. It acts as a pre-processor of the raw input signal. You could also first pre-process your training set and store it in a file. Then you can use this file and feed it directly to the deep neural network. You don't need the Convolution anymore at training.
    Another way of making your signal (picture) invariant is to first Fourier Transform it to make it scaling and translation invariant. Next you transform the signal from cartesian to polar coordinates to make it rotational invariant. Finally you Fourier Transform that signal and end up with a fully invariant signal that you can store as a pre-processed Training set.

    • @sourabhsoni3988
      @sourabhsoni3988 2 ปีที่แล้ว +3

      Any citations for elaborating what you said.

    • @pietjan2409
      @pietjan2409 ปีที่แล้ว +1

      But CNN makes it possible to sequentially apply more abstract filters that fit the specific objects in the image. I'm not sure if those transformations you named are able to do that, which is taking very complex and abstract patterns into account.

  • @simonrashid-po4zq
    @simonrashid-po4zq 8 หลายเดือนก่อน +5

    man i like how you clearly explain your videos

  • @africa_revealed
    @africa_revealed 8 วันที่ผ่านมา

    I was smiling to myself the whole time. So simple and succinct! Thank you

  • @kaysonargyle
    @kaysonargyle 8 หลายเดือนก่อน +20

    Mans just wrote in perfect handwriting BACKWARDS on the glass and no one is talking about it what the heck

    • @emmanueljohn4178
      @emmanueljohn4178 6 หลายเดือนก่อน +18

      um actually the video
      is mirrored

    • @CristhianDalmazzo
      @CristhianDalmazzo 6 หลายเดือนก่อน +2

      The magic of video editing, he’s a wizard

    • @jgcornell
      @jgcornell 4 หลายเดือนก่อน

      If you look around, you'll find a video they made to address just this question, everyone who watches IBM videos asks exactly that, I know I did :)

    • @amritbhattarai5083
      @amritbhattarai5083 หลายเดือนก่อน

      Its an easy solution actually. The video is recorded from the other side of the glass board. The video is then flipped horizontally. You can observe the watch appears to be on his right hand but its actually left.

  • @minnaazmy6710
    @minnaazmy6710 7 หลายเดือนก่อน +1

    This channel has some of the best CompSci explanations ! Never been disappointed!

  • @andresinho83
    @andresinho83 3 ปีที่แล้ว +6

    0:42 I cannot get over the fact that this dude just wrote the term CNN backwards so easily and so fast :O

    • @andresinho83
      @andresinho83 3 ปีที่แล้ว +3

      Or maybe he just inverted the video horizontally in post edition

    • @frankbik1063
      @frankbik1063 2 ปีที่แล้ว

      try looking at the video using a mirror ...

    • @badbud804
      @badbud804 ปีที่แล้ว +2

      He inverted the video. That's why he's writing with his left hand and wearing his clock on the right arm.

    • @andresinho83
      @andresinho83 ปีที่แล้ว

      ​@@badbud804yeah, I also mentioned that but it would be very impressive if he could actually do that

    • @pruthweeshasalian3688
      @pruthweeshasalian3688 หลายเดือนก่อน

      the knob/button on the watch (which is typically to the right of the dial/screen) is the most unambiguous clue establishing the video is mirrored.

  • @MrMMF94
    @MrMMF94 ปีที่แล้ว +10

    Such a likeable person explaining so well, much appreciated! :)

  • @jesprotech
    @jesprotech 2 หลายเดือนก่อน +1

    I was looking to understand how to represent a CNN in a way that clearly shows the difference to just dense neural networks. This really helped! thanks!

  • @P400hse
    @P400hse 6 หลายเดือนก่อน

    This is probably the best explained video i've ever watched, you're a great tutor!!!!!😍😍

  • @m.g.4805
    @m.g.4805 3 หลายเดือนก่อน +4

    Amazing explanation!
    Two quick questions:
    1. If each layer of a neural network can recognize more complex / abstract objects, does that mean that deeper neural networks (neural networks with more layers) will always be more powerful, or at least have the potential to be more powerful?
    2. Could one say the same about the width of neural networks? Would a neural network with more nodes per layer be able to recognize a larger variety of images?

    • @pruthweeshasalian3688
      @pruthweeshasalian3688 หลายเดือนก่อน

      Both those assumptions are valid, with some caveats.
      If you have too many nodes in a layer, you're looking for too many features in the data, and you'd virtually memorise the training data after some point, because you're not reducing the dimensionality anymore.
      If you use too many layers, you're risking vanishing/exploding gradients, and you're making features needlessly complex, which may also lead to overfitting.
      Besides, there need to be sufficiently complex activation functions between layers to leverage the feature-extracting prowess prowess of each node. If the activation functions are too non-linear, the individual weights become less meaningful, and harder to train. If the activation function is not sufficiently non-linear, you're essentially obtaining the result of single matrix multiplication operation with the computational overhead of multiple operations.

  • @emc3000
    @emc3000 ปีที่แล้ว

    Dear lord this is perfectly chunked information.

  • @moonstone6071
    @moonstone6071 11 หลายเดือนก่อน

    Fantastic explanation! Very pedagogical and easy to follow. Thank you!

  • @Traxin027
    @Traxin027 8 หลายเดือนก่อน

    Martin, you are a superb teacher. You make learning easy and fun.

  • @imohrufus
    @imohrufus 3 หลายเดือนก่อน

    there should be a full course on this neural network taught by Martin

  • @mohamedvawda979
    @mohamedvawda979 2 ปีที่แล้ว +2

    This explanation was so good. Currently using CNNs for remote sensing applications.

  • @kitrt
    @kitrt 3 ปีที่แล้ว +7

    Hi! Have I assumed correctly that in case of using CNNs for image recognition, the deeper the filters go, the more they zoom out on the image?
    Next logical question is - what type of software is used to analyze test cases (e.g. real houses) and create those filters?

    • @ydl6832
      @ydl6832 ปีที่แล้ว

      The filter is no more than just a matrix. The discrete convolution is performed in each layer (this is where the name CNN comes from). The filter is refined using training data, just like how you would train a perception, you train the matrix to behave as desired.

  • @karthik-ie1zj
    @karthik-ie1zj 6 หลายเดือนก่อน

    you are more and more better than my clg faculty thank you for a great a explanation 😍

  • @anabucchi9003
    @anabucchi9003 5 หลายเดือนก่อน

    best teacher!! 👏

  • @jeremypatton8204
    @jeremypatton8204 5 หลายเดือนก่อน

    Nice series Marvin 😁

  • @jzhao1562
    @jzhao1562 6 หลายเดือนก่อน

    Fantastic Video. Is Martin always writing mirrored? I am fastinated by how your video recording works!

  • @nirbhaykumarchaubey8777
    @nirbhaykumarchaubey8777 หลายเดือนก่อน

    I understood it very well, in case som1 didn't, watch this video after watching 3b1b video on neural networks

  • @herosoftheworld7
    @herosoftheworld7 5 หลายเดือนก่อน

    Very excellent explanation ❤

  • @19AKS58
    @19AKS58 4 หลายเดือนก่อน

    Martin, how are the filters for a CNN created? Random? stored in some database? Might there be advantage from specifying filters yourself, particularly if you have expertise with the domain the images are from ?

  • @consyyrd
    @consyyrd 10 หลายเดือนก่อน

    So I take the key to building a CNN is on how to build the filters? also, given that the first layer is fragmented, does it mean that the first layer could be of general usage, while the later layers are more application oriented?

  • @0xabaki
    @0xabaki 10 หลายเดือนก่อน

    amazing as usual.

  • @tjunohambeka1938
    @tjunohambeka1938 ปีที่แล้ว +1

    This was easy to understand and very concise...Thank you

  • @akmalyafi1470
    @akmalyafi1470 2 ปีที่แล้ว

    Hello, thank you for the explanation but I still don't understand how the filters are made.

  • @basedmatt
    @basedmatt 2 ปีที่แล้ว

    What would be the difference between the standard convolutional networks and something newer like CLIP?

  • @JackMacyntire
    @JackMacyntire 5 หลายเดือนก่อน

    At last a video that is useful!

  • @ayushmohanty4123
    @ayushmohanty4123 ปีที่แล้ว

    I have a question how are the levels of filters are defined ?

  • @michaelkaercher
    @michaelkaercher 6 หลายเดือนก่อน

    Very good explaination. Thank you.

  • @namadivinodkumar9755
    @namadivinodkumar9755 2 ปีที่แล้ว

    Can we implement this CNN to determine micro-level profiles, i.e., micrometer level?

  • @bryantea2039
    @bryantea2039 3 ปีที่แล้ว +5

    Well if the beer videos ever stop Martin you have a career in IT Vlogging 😁

  • @mona-xf5mr
    @mona-xf5mr 4 หลายเดือนก่อน

    love this explanation ...

  • @vinadiscar5236
    @vinadiscar5236 3 ปีที่แล้ว +3

    You made it easy to understand. Very helpful. Thanks a lot :)

  • @lordoftherain
    @lordoftherain ปีที่แล้ว

    so by combining the other video of yours. At the end of the the CNN there will be a discriminator which has been trained to know what a house looks like, what an apartment looks like, what a skyscraper looks like and therefore tells you that is a house ?

  • @EmTechCySecEdu
    @EmTechCySecEdu 5 หลายเดือนก่อน

    Thanks. Great learning Video.

  • @enfermagemporummundomelhor6499
    @enfermagemporummundomelhor6499 6 หลายเดือนก่อน

    certo, curiosidade: Se tratando de pessoas gêmeas ou sei lá trigêmeas univitelinos como diferencia-las pela CNN? Outro detalhe com relação aos filtros, suponhamos que temos objetos sobre as retas por exemplo como identifica-las neste processo com tão vastas imagens possíveis de armazena-las?

  • @meryamelqamary7638
    @meryamelqamary7638 ปีที่แล้ว

    Hi ,I'm a maths student and I need to do a project. the theme is games and sport. I saw your video and thought why not apply this technique to the world of sports? to discover from the analysis of the players' movements if one is sick. Can you help me to apply CNN and use it well please.

    • @John-wx3zn
      @John-wx3zn 8 หลายเดือนก่อน

      Don't ask him. His explaination is sloppy and incomplete. The convolution operations with the filters produce matrix channels building the tensor. For example after four convolution operations, you should have four matrix channels. The next operation would be a max pooling operation on each matrix channel in the tensor. Please let me know if you have a question.

  • @nassimaguenaoui3776
    @nassimaguenaoui3776 ปีที่แล้ว +1

    Very clear and right-to-the-point explanation! Thank you!

  • @snowykoyuki
    @snowykoyuki ปีที่แล้ว +73

    This is too low level and vague for people who need it and too high level and complicated for children, I believe that you should go more in depth to provide more information such as how the convolution works, different activation methods and different types of layers

    • @ydl6832
      @ydl6832 ปีที่แล้ว +15

      It is just an introduction. If one wants to learn the details, they can search for textbooks, I believe there are countless available.

    • @aaroncroft7514
      @aaroncroft7514 ปีที่แล้ว +7

      Then actually go and study CNNs. This is a brief overview of how they work.

    • @allenabishek1478
      @allenabishek1478 11 หลายเดือนก่อน +7

      These videos are for 2 demographics, young adults/teenagers who find AI technology fascinating and want to understand how it works. And for children to spark the flame of the scientist inside them towards AI development when they grow up. The Second reason is the most important.

    • @sukritthakur1362
      @sukritthakur1362 3 หลายเดือนก่อน +4

      I genuinely needed a 2 minute explanation of this term and a few others. I guess I'm the target audience.

  • @ghostofvalor
    @ghostofvalor 8 วันที่ผ่านมา

    Damn that was crystal clear.

  • @JockGeez
    @JockGeez ปีที่แล้ว

    This guy gives crystal clear explanations. Supremely Clear!

  • @jimj2683
    @jimj2683 ปีที่แล้ว

    Doesn't it require a lot of manual work to make all those filters? Isn't it better to just run everything through a regular neural network?

    • @pruthweeshasalian3688
      @pruthweeshasalian3688 หลายเดือนก่อน

      That's the neat part - you don't manually make those filters. Those filters are learned by the network based on bounding boxes in the annotated training images.

  • @Goalkeeper143
    @Goalkeeper143 2 ปีที่แล้ว

    Utterly well done, our IBM ML specialist!

  • @benscott8614
    @benscott8614 ปีที่แล้ว +1

    Is he writing backwards...! impressive

  • @ANIF_CYMBOLIC
    @ANIF_CYMBOLIC 7 หลายเดือนก่อน

    Identifying, organizing and reaping to thought.
    Your tv CAN communicate with you via your neurons producing electromagnetic waves

  • @nehaskulkarni
    @nehaskulkarni 10 หลายเดือนก่อน

    such an easy, clear and to the point explanation! thanks a lot

  • @rogerfed2030
    @rogerfed2030 11 หลายเดือนก่อน

    is this what the vision pro uses?

  • @bran_rx
    @bran_rx 2 ปีที่แล้ว

    this video hits different if you are currently taking digital image processing course. I feel smart lol

  • @Yewbzee
    @Yewbzee ปีที่แล้ว +1

    Machine learning is truly amazing yet it pales into insignificance when compared to the ability of this chap to write backwards.

    • @capitão_paçoca
      @capitão_paçoca 8 หลายเดือนก่อน

      I cant tell whether you're joking, but I think the video is flipped horizontally

  • @praphulshaw2128
    @praphulshaw2128 ปีที่แล้ว

    What kind of bord do u use to write

  • @YazanAlManasir
    @YazanAlManasir 2 ปีที่แล้ว

    thanks martin for the clear explanations
    you are amazing

  • @nazrinibrahimli7042
    @nazrinibrahimli7042 ปีที่แล้ว

    The best explanation ever.

  • @bellofolaniyi5546
    @bellofolaniyi5546 29 วันที่ผ่านมา

    Highly insightful

  • @pierQRzt180
    @pierQRzt180 ปีที่แล้ว

    The volume is a bit quiet here.

  • @crazymonkey5381
    @crazymonkey5381 3 ปีที่แล้ว +2

    clearly understandable 🙏🙏🙏

  • @elenapotapova624
    @elenapotapova624 10 หลายเดือนก่อน

    finally ! bravo. clear and concise

  • @JamesAuger-t9o
    @JamesAuger-t9o ปีที่แล้ว

    Explained this video very well - highly recommend! Thank you

  • @alihankaya9183
    @alihankaya9183 ปีที่แล้ว +1

    Will the Activation Functions video come?

  • @elmoreglidingclub3030
    @elmoreglidingclub3030 ปีที่แล้ว

    Great explanation! Great job; thanks!

  • @ksatriabaja
    @ksatriabaja หลายเดือนก่อน

    Thanks really helpful

  • @saadat_ic
    @saadat_ic ปีที่แล้ว

    This explanation is good. Thanks. 😊

  • @RaselAhmed-ix5ee
    @RaselAhmed-ix5ee 3 ปีที่แล้ว

    can you help me regarding my project "human pose estimation"

    • @IBMTechnology
      @IBMTechnology  3 ปีที่แล้ว

      Hi Rasel! What sort of help would you need? 🙂

    • @RaselAhmed-ix5ee
      @RaselAhmed-ix5ee 3 ปีที่แล้ว

      @@IBMTechnology i have to detect human pose estimation through skeletal data extracted from it

  • @rubenhanjrahing7324
    @rubenhanjrahing7324 ปีที่แล้ว

    oh my god, thankyou for the explanation. Easy to understand

  • @kaviarasu.thuraiarasu89
    @kaviarasu.thuraiarasu89 2 ปีที่แล้ว

    Superb explaination

  • @krishnapayneeandy2016
    @krishnapayneeandy2016 2 ปีที่แล้ว

    Application of successive Convolutional Filters well presented but at a high level only

  • @monome3038
    @monome3038 ปีที่แล้ว

    great work explaining!

  • @studywithmaike
    @studywithmaike ปีที่แล้ว

    Great video! Thanks 👍🏼

  • @albuslee4831
    @albuslee4831 9 หลายเดือนก่อน

    This was so great thank you

  • @paskalisnani
    @paskalisnani 3 ปีที่แล้ว

    Thank you

  • @austinbao
    @austinbao ปีที่แล้ว

    perfect explanantion. I hate it when people throw difficult terms around. Why can't it be precise and clear such as using a house as an analogy. Well done!

  • @rajhanravi
    @rajhanravi ปีที่แล้ว

    Wow such a comprehensive content on CNN!

  • @JoaoAssalim
    @JoaoAssalim ปีที่แล้ว

    Very good explanation!

  • @thehappygravedigger
    @thehappygravedigger ปีที่แล้ว

    Awesome explanations ! ... thank you for sharing your knowledge ;))

  • @void1185
    @void1185 ปีที่แล้ว

    amazing work. thank u!

  • @shunmugapriyamc4522
    @shunmugapriyamc4522 2 ปีที่แล้ว

    Waiting to learn more from you

  • @michaelmcwhirter
    @michaelmcwhirter 9 หลายเดือนก่อน

    Great video 🔥

  • @tomitomi7941
    @tomitomi7941 4 หลายเดือนก่อน

    Thank you :)

  • @IngeniousDimensions369
    @IngeniousDimensions369 3 ปีที่แล้ว

    More please ☺️☺️

    • @IBMTechnology
      @IBMTechnology  3 ปีที่แล้ว

      Definitely what we're planning! 😀 In the meantime, feel free to subscribe to get notified of when we post more videos.

  • @biswajitrout4710
    @biswajitrout4710 3 ปีที่แล้ว

    Great content

  • @MaxXFalcon
    @MaxXFalcon ปีที่แล้ว

    It's just like our brain recognises objects. Can we make conscious using this technique? Probably yes in future

  • @MaryJoseph19
    @MaryJoseph19 หลายเดือนก่อน

    thank you :)

  • @MegaMey1234
    @MegaMey1234 9 หลายเดือนก่อน

    All I can think of is... that how good he is in writing everything mirrored....

  • @jeanpeuplu3862
    @jeanpeuplu3862 2 ปีที่แล้ว

    AWESOME! Thanks :)

  • @mubashir22ful
    @mubashir22ful ปีที่แล้ว

    Funny guy. Love him

  • @mzimmerman1988
    @mzimmerman1988 7 หลายเดือนก่อน

    thanks

  • @МихаилКуляпин-щ8л
    @МихаилКуляпин-щ8л 3 ปีที่แล้ว

    Thanks a lot!

  • @chaoukimachreki6422
    @chaoukimachreki6422 3 ปีที่แล้ว

    This man rocks 🤘

  • @DataScienceAI-rf4kx
    @DataScienceAI-rf4kx ปีที่แล้ว

    clear and concise bigger picture of CNN

  • @subodhi6
    @subodhi6 3 ปีที่แล้ว

    Thank you..!!

  • @typingcat
    @typingcat ปีที่แล้ว

    Wait, that's a house? I thought it was the head of a tin robot.

  • @denissetiawan3645
    @denissetiawan3645 3 ปีที่แล้ว

    Master Inventor. Cool :)

  • @danyroby8471
    @danyroby8471 7 หลายเดือนก่อน

    that was a simple wow,,,,

  • @HansomWinfred-z7k
    @HansomWinfred-z7k 3 หลายเดือนก่อน

    Clifton Well