Cayley-Hamilton Theorem [Control Bootcamp]

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024

ความคิดเห็น • 59

  • @giorgospanagiotidis3134
    @giorgospanagiotidis3134 4 ปีที่แล้ว +93

    I 've watched about 5 videos of C-H theorem and each of you is explaining it differently.. I think you should all gather together and talk this through..

    • @spoopedoop3142
      @spoopedoop3142 4 ปีที่แล้ว +22

      C-H is a big theorem that has found it's way into many different applications. Each of these will have a different interpretation based on what it is used for in their field, and the "best interpretation" is usually dependent on context or is whichever melds with your psychology.

    • @NoobSaibot123
      @NoobSaibot123 2 ปีที่แล้ว +3

      😆

    • @badnoodlez
      @badnoodlez ปีที่แล้ว +6

      @@spoopedoop3142 The only real interpretation is that you can use the eigenvalues of a matrix to form an interpolation problem.
      E.g matching on eigenvalues. Find the inverse or any power in terms of the characteristic equation is just a special case of mapping onto analytic functions.

    • @dacianbonta2840
      @dacianbonta2840 9 หลายเดือนก่อน +2

      more than one way to shuck an oyster

    • @kpadjisamuel2968
      @kpadjisamuel2968 6 หลายเดือนก่อน +1

      😂😂

  • @suryagurajapu8474
    @suryagurajapu8474 9 หลายเดือนก่อน +11

    How can they write in reverse

    • @hierismail
      @hierismail 5 หลายเดือนก่อน +6

      He mentioned in a different video that he is lefthanded.
      My guess? He writes just normaly and then mirrors the video.

    • @helpmireach66subwith0video9
      @helpmireach66subwith0video9 8 วันที่ผ่านมา +1

      Because this video is flipped(edited)

    • @helpmireach66subwith0video9
      @helpmireach66subwith0video9 8 วันที่ผ่านมา

      ​@@hierismaillol this video is flipped

  • @robbiewilliamson9783
    @robbiewilliamson9783 4 ปีที่แล้ว +6

    Your enthusiasm is contagious. Great video :)

    • @Eigensteve
      @Eigensteve  2 ปีที่แล้ว

      Glad you liked it!

  • @ulisespachecosanchez5058
    @ulisespachecosanchez5058 4 ปีที่แล้ว +1

    This is one of the most important lessons that we need to know and understand details and where they are doing intepretation of differentes points for to get the solution in this particular form..thank you..very interesting....thank´s.

  • @rijugoswami600
    @rijugoswami600 4 ปีที่แล้ว +6

    It is true for every square matrix

  • @sanjanavijayshankar5508
    @sanjanavijayshankar5508 3 ปีที่แล้ว +5

    Favorite theorem ever!

  • @bharathiarumugam263
    @bharathiarumugam263 3 ปีที่แล้ว +4

    Every square matrix satifies it's own characteristic equation

  • @gahozomuhamedi7287
    @gahozomuhamedi7287 ปีที่แล้ว

    Sagt feyjyu maniaba so, it is so interesting to hear from you thanks sedurufu karanga monira you deserve 5 star

  • @gargantua1
    @gargantua1 4 ปีที่แล้ว +7

    Hi! Could you explain what was the square matrix that Cayley Hamilton does not work on?

    • @charlesbrowne9590
      @charlesbrowne9590 4 ปีที่แล้ว +3

      Emre Yılmaz The C-H theorem is valid for all square matrices, no exceptions. The lecturer was confused by someone who erroneously thought otherwise.

    • @KrzysiekWawrytko
      @KrzysiekWawrytko 3 ปีที่แล้ว +6

      Of course, the guy is wrong. Someone told him that there are some square matrices that do not satisfy their own characteristic polynomial and he has repeated this false claim. The C-H is a perfect theorem and holds for every matrix (as long as it is a matrix with coefficients in a commutative ring, such as Z, R, C etc.).

  • @RugnirSvenstarr
    @RugnirSvenstarr 2 ปีที่แล้ว +2

    n here is still the dimentions of the state right? I got pretty confused trying to follow this one, the others have been fantastic so far though.
    Edit: and alpha is the coefficient of that bit of the characteristic polynomial I think? is there a fancy way to get that without going the long way around and multiplying out A

  • @bau6398
    @bau6398 3 ปีที่แล้ว +3

    How did you write that....

  • @shridharambady2069
    @shridharambady2069 หลายเดือนก่อน

    Is there an error at 3:56? Shouldn't there be a negative term?

  • @abeershawk5986
    @abeershawk5986 2 ปีที่แล้ว +1

    Thank you a thousand times!!!

    • @Eigensteve
      @Eigensteve  2 ปีที่แล้ว

      You are very welcome!

  • @KrzysiekWawrytko
    @KrzysiekWawrytko 3 ปีที่แล้ว +2

    The guy is obviously wrong when claiming that Caley-Hamilton theorem is not true for some matrices (of course he did not present any such counterexample). Every matrix satisfies its characteristic equations provided that its entries are in commutative ring. But this is the case of reals, complex or integer numbers. I do not thing that he may have thought of the matrices with, let’s say, quaternions elements. This is quite a different story - there are even problems with defining a determinant for such non-commutative fields.

  • @tobyouyang3463
    @tobyouyang3463 3 ปีที่แล้ว +1

    This is honest to goodness art!

  • @saunakroychowdhury5990
    @saunakroychowdhury5990 9 หลายเดือนก่อน +3

    how do they use such board? If anyone can explain

  • @raincloud763
    @raincloud763 3 ปีที่แล้ว

    I understand that matrix A's order can by lowered Cayley-Hamilton theorem, but what about the alpha term that is multiplied to A. Can the order of t in the alpha term also be reduced by some fascinating theory? Anyway thank you for the lecture sir.

  • @VidimusWolf
    @VidimusWolf 4 ปีที่แล้ว +6

    Hi! Thank you very much for the lesson, I love your passion and it really makes everything more easily understandable!

    • @ritobanghosh7453
      @ritobanghosh7453 4 ปีที่แล้ว

      Agree, I understood it clearly.

    • @MATHSMANHARSAN
      @MATHSMANHARSAN 4 ปีที่แล้ว

      Superb sir.th-cam.com/video/GaYdOvHozZ8/w-d-xo.html
      This is also the best way to proof

    • @Eigensteve
      @Eigensteve  2 ปีที่แล้ว +1

      You are welcome!

  • @fathimathusafa1975
    @fathimathusafa1975 ปีที่แล้ว

    Thank you a thousand times.... 😍😍

  • @siddhartha5186
    @siddhartha5186 ปีที่แล้ว +2

    are u writing in reverse

  • @dhamodharreddyguthikonda2260
    @dhamodharreddyguthikonda2260 3 ปีที่แล้ว

    Why you written alpha1(t) up to so on in e power at

  • @jiayiliu9128
    @jiayiliu9128 3 ปีที่แล้ว +1

    great video! thanks you

    • @Eigensteve
      @Eigensteve  3 ปีที่แล้ว

      Glad you liked it!

  • @cankandamar
    @cankandamar 6 หลายเดือนก่อน

    Somebody explain how he writes that way

  • @abdulfatahmohamoud1146
    @abdulfatahmohamoud1146 4 ปีที่แล้ว +1

    Remarkble video .

  • @playerunknownbattlegraound
    @playerunknownbattlegraound 3 ปีที่แล้ว +2

    How is this possible guy's...
    That's amazing👍
    How wrote you....
    🤪🤪🤯

  • @MATHSMANHARSAN
    @MATHSMANHARSAN 4 ปีที่แล้ว +1

    Nice

    • @Eigensteve
      @Eigensteve  4 ปีที่แล้ว +1

      Thanks

    • @MATHSMANHARSAN
      @MATHSMANHARSAN 4 ปีที่แล้ว

      Sir.i am also have a channel in name of ADVANCED MATHEMATICS. I need to know that app you have used in editing this video.may i know the name please?

  • @allandogreat
    @allandogreat 4 ปีที่แล้ว

    Thanks....

  • @Listen_bros
    @Listen_bros ปีที่แล้ว

    You saying ... is cool 😁

  • @madhurwagh5418
    @madhurwagh5418 4 ปีที่แล้ว +2

    How the hell ya'll write backwards!!?

    • @PaulWintz
      @PaulWintz 3 ปีที่แล้ว +4

      They're writing forwards. The video is mirrored.

  • @v.a2282
    @v.a2282 9 หลายเดือนก่อน

    How is he writing backwards?! Am i tripping? It's 2am

  • @bharathiarumugam263
    @bharathiarumugam263 3 ปีที่แล้ว +1

    Hey man!!! How cool you are !!!😍
    & Handsome too❤love the way you are 😌

  • @MTNtf2
    @MTNtf2 4 ปีที่แล้ว

    helal lan sana

  • @fynn4310
    @fynn4310 2 ปีที่แล้ว +1

    Falschgeld

  • @fiesescheiwen134
    @fiesescheiwen134 2 ปีที่แล้ว

    Imagine man schaut Formel 1 und denkt sich ich mach zu dem Hamilton ein Video! Gilt das jetzt für alle Matrizen oder nicht du kek?!?!

    • @electro.engineering
      @electro.engineering 2 ปีที่แล้ว

      Ja, es gilt für alle nxn Matrizen, deren Einträge aus einem kommutativen Ring (Z, R, C, etc...) kommen.