Fundamental Theorem of line integrals

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 ก.พ. 2025
  • In this video, I present the fundamental theorem for line integrals, which basically says that if a vector field ha antiderivative, then the line integral is very easy to calculate. This illustrates why conservative vector fields are so important! I also provide a proof of the FTC, which uses... the chen lu!!! Finally, I show why we need the condition P_y = Q_x to check if a vector field is conservative. Enjoy!

ความคิดเห็น • 40

  • @justdusty9697
    @justdusty9697 6 ปีที่แล้ว +25

    This man's happiness when he does maths just makes me love maths even more

  • @WerIstWieJesus
    @WerIstWieJesus 4 ปีที่แล้ว +3

    So clear! And so short! I never thought that this could be explained so convincing in so little time together with an example.

  • @finnbar004
    @finnbar004 6 หลายเดือนก่อน

    Quite possibly the best video I've seen on the topic, thank you!

    • @drpeyam
      @drpeyam  6 หลายเดือนก่อน

      Wow, thanks!

  • @miazlorenz8799
    @miazlorenz8799 2 ปีที่แล้ว

    As you say “Thank you for coming”, just want to say “Thank you for teaching”!

  • @softwarephil1709
    @softwarephil1709 ปีที่แล้ว +1

    Important note: this only applies to conservative fields. In non conservative fields the line integral depends on the path.

  • @Aviationlover-belugaxl
    @Aviationlover-belugaxl 6 ปีที่แล้ว +1

    That theorem is very interesting and very useful! Thanks for making this video!

  • @bouteilledargile
    @bouteilledargile 6 ปีที่แล้ว +4

    at 6:45, dr peyam saying "arrrrgh but this- this is g(y)" is my new favorite thing in the world

  • @lightspd714
    @lightspd714 ปีที่แล้ว

    Dr. Peyam, hope you are doing well! Thank you for all the wonderful content 😊.

  • @aseelal5338
    @aseelal5338 6 หลายเดือนก่อน

    OMG thank you alot now I understand it!!

  • @the.lemon.linguist
    @the.lemon.linguist หลายเดือนก่อน

    could another reason the P_y Q_x test work be the fact that you can also find out if a vector field is conservative by the curl being 0 and the determinant definition of the curl would give you both of those in a term like (Q_x - P_x)k where k is the z-axis unit vector, meaning the term would have to go to zero?

  • @TheMauror22
    @TheMauror22 6 ปีที่แล้ว +3

    You should do a video proving the equality of crossed partial derivatives!

  • @matheuscolmenero4493
    @matheuscolmenero4493 6 ปีที่แล้ว

    very good guy, congratulations, your channel is awesome

  • @irshadsirslectures4446
    @irshadsirslectures4446 4 ปีที่แล้ว

    I have a question , why u didn't after adding at the end in example ignored 2, Does that mean we have to add fx and fy always

  • @brandonredenbo6583
    @brandonredenbo6583 2 ปีที่แล้ว +1

    Kyle from Nelk teaches Calc 3

  • @cafe-tomate
    @cafe-tomate 4 หลายเดือนก่อน

    Why does Clairaut's theorem (also known as: Swchartz theorem) can be applied when F is conservative?

    • @drpeyam
      @drpeyam  4 หลายเดือนก่อน

      It can always be applied, not just when F is conservative

  • @dgrandlapinblanc
    @dgrandlapinblanc 6 ปีที่แล้ว +1

    It's dependant of the integration of parametrics functions of blackpenredpen ? If it's the case it's genial ! Thanks.

    • @drpeyam
      @drpeyam  6 ปีที่แล้ว +1

      Those are two slightly different things, unfortunately! Here I show the line integral of a vector field is independent of parametrization. In bprp’s videos he shows a curve is independent of parametrization!

    • @dgrandlapinblanc
      @dgrandlapinblanc 6 ปีที่แล้ว +1

      @@drpeyam Thank you very much fort your complete answer.

  • @borg972
    @borg972 6 ปีที่แล้ว +2

    Why when taking a second derivative the order (dxdy dydx) doesn't matter?
    They don't teach you that in physics 😿

    • @LudusYT
      @LudusYT 5 ปีที่แล้ว +1

      It's something you learn in Calculus 3 (not Physics I believe) called Clairaut's Theorem. In this theorem you can see that those two derivatives are the exact same thing.

    • @tomatrix7525
      @tomatrix7525 4 ปีที่แล้ว

      Experiment with derivatives mixing up the order, you’ll see it does not matter. As to why, well it’s analogious to multiplying. That is, 10.2.5 = 10.5.2 etc

  • @TheSouravrocks
    @TheSouravrocks 5 ปีที่แล้ว

    thank you so much!

  • @jannien4129
    @jannien4129 ปีที่แล้ว

    It was on 420 likes so I didnt want to like but had to give this a like now its 421 😂🤘🤘

  • @michaelempeigne3519
    @michaelempeigne3519 6 ปีที่แล้ว

    Quixote is a character in a foreign book.

    • @weinihao3632
      @weinihao3632 6 ปีที่แล้ว

      I think he said "quixotic" - which seems to be derived from the character, though :)

  • @mathadventuress
    @mathadventuress 4 ปีที่แล้ว

    im struggling with this stuff
    your smile makes me feel bad because i dont get it :(

    • @drpeyam
      @drpeyam  4 ปีที่แล้ว +1

      :(

    • @drpeyam
      @drpeyam  4 ปีที่แล้ว +1

      Check out my vector calculus playlist maybe?

    • @drpeyam
      @drpeyam  4 ปีที่แล้ว +1

      And this: sites.uci.edu/ptabrizi/math2ewi20/

    • @mathadventuress
      @mathadventuress 4 ปีที่แล้ว

      @@drpeyam I'll check it out when I finish this class. My final is Friday yikes.

    • @mathadventuress
      @mathadventuress 4 ปีที่แล้ว

      @@drpeyam I have a 57% so far lmao I need like a 65% to pass the class with a c

  • @Zonnymaka
    @Zonnymaka 6 ปีที่แล้ว

    Well, i'm sorry dr. Pi but you really had to explain that the first "check" (Schwarz Theorem) is a necessary but not sufficient condition for that to be an exact equation.
    "Luckily" enough, that f(x,y) is differentiable and determined for every real x,y :)