BELIEVE IN ALGEBRA, NOT CALCULATOR

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 พ.ย. 2024

ความคิดเห็น • 1.7K

  • @aasyjepale5210
    @aasyjepale5210 5 ปีที่แล้ว +5993

    i did some mental math, but hit a wall at trying to find the square root of 63,252,753,001

    • @iamgroot3615
      @iamgroot3615 5 ปีที่แล้ว +317

      that’s some impressive mental math assuming you’re telling the truth . Is there a trick or something

    • @AngryAxew
      @AngryAxew 5 ปีที่แล้ว +365

      @@iamgroot3615 theres no trick hes probably lying

    • @AngryAxew
      @AngryAxew 5 ปีที่แล้ว +240

      r/iamverysmart

    • @marvinfung2050
      @marvinfung2050 5 ปีที่แล้ว +327

      AngryAxew there's no reason not to be able to mental math those numbers
      Like 500(500+1) which is easier which is 250000+500 and it similar to the end

    • @narayanankannan6787
      @narayanankannan6787 5 ปีที่แล้ว +157

      I mean it's OBVIOUSLY 251501.

  • @yuliaokhremenko6613
    @yuliaokhremenko6613 5 ปีที่แล้ว +2251

    I just started learning English, but the explanations are clear and interesting even at my levels of English. Thanks a lot 😁👍

    • @blackpenredpen
      @blackpenredpen  5 ปีที่แล้ว +249

      Юлия Охременко I am
      Glad to hear!

    • @enhace15anos.83
      @enhace15anos.83 4 ปีที่แล้ว +5

      x2

    • @corona8073
      @corona8073 4 ปีที่แล้ว +6

      U r indian Chinese korean or ....???

    • @donovanholm
      @donovanholm 4 ปีที่แล้ว +49

      @@harelavv8806 the name may seem obviously Russian to some but not all

    • @siddharthsoni2101
      @siddharthsoni2101 4 ปีที่แล้ว +1

      @@blackpenredpen hii

  • @Armbrust666
    @Armbrust666 5 ปีที่แล้ว +3664

    Wow... this essentially proved that if you take the product of four consecutive -numbers- integers and add one to it, than it's gone be a square number.

    • @ClimateAdam
      @ClimateAdam 5 ปีที่แล้ว +175

      Awesome! Good spot!

    • @fanyfan7466
      @fanyfan7466 5 ปีที่แล้ว +121

      Gábor Tóth holy shit you’re right! That’s crazy man

    • @blackpenredpen
      @blackpenredpen  5 ปีที่แล้ว +787

      Yup!!

    • @kingbeauregard
      @kingbeauregard 5 ปีที่แล้ว +145

      The most pathological case I can think of is -1 thru 2, and yes indeed I get 1, which is a perfect square.

    • @pcklop
      @pcklop 5 ปีที่แล้ว +231

      My professor had us prove a more general result: take the product of four numbers in arithmetic sequence, then add the fourth power of their common difference. Show that the result is a perfect square.

  • @BryanLu0
    @BryanLu0 5 ปีที่แล้ว +919

    Instead distributing at 4:18
    u = x^2 + 3x + 1
    (u - 1)(u + 1) + 1 = u^2
    So the root is x^2 + 3x + 1 = 251501

    • @blackpenredpen
      @blackpenredpen  5 ปีที่แล้ว +224

      Bryan Lu omg that cat!!!!

    • @AmitBentabou
      @AmitBentabou 5 ปีที่แล้ว +34

      Or even u=x^2+3x, then u^2+2u+1

    • @matias12381
      @matias12381 5 ปีที่แล้ว +7

      digno de nyan cat, jajajajaj

    • @mattat3847
      @mattat3847 5 ปีที่แล้ว +39

      My life is a lie. I thought u subbing was only for integrals

    • @RunstarHomer
      @RunstarHomer 5 ปีที่แล้ว +28

      @@mattat3847 nah man, sub whenever it makes the problem simpler

  • @sethdon1100
    @sethdon1100 5 ปีที่แล้ว +752

    Olympic math taught me that insanely hard problems often had elegant solutions, this is no exception.

    • @blackpenredpen
      @blackpenredpen  5 ปีที่แล้ว +74

      : ))))

    • @hafizh8461
      @hafizh8461 4 ปีที่แล้ว +1

      @@leif1075???

    • @hemandy94
      @hemandy94 4 ปีที่แล้ว +13

      @@leif1075 people like these are called problem solvers...

    • @drudi1
      @drudi1 4 ปีที่แล้ว +2

      @@leif1075 well it took me about 5min to solve it so I think is not impossible to solve. All of this types of equations where you have 4 consecutive numbers multipled are done like this

    • @jayasri6764
      @jayasri6764 4 ปีที่แล้ว +15

      Lol,This problem is actually super easy,(Every single Olympiad contestant would have solved this question,at some point of their life) .Insanely hard problems need not have simple solutions . That's a downside of the math Olympiad .They make you expect difficult problems have simple solutions.(Although,most imo contestants don t fall for this fallacy).Real insanely hard problems have not been solved by anyone,yet.

  • @threadeater345
    @threadeater345 5 ปีที่แล้ว +1716

    1990: we'll have flying cars by 2019
    2019: 2=1+1, wow I'm a genius

    • @blackpenredpen
      @blackpenredpen  5 ปีที่แล้ว +176

      LOL

    • @ghotifish1838
      @ghotifish1838 4 ปีที่แล้ว +59

      2+2 is 4, minus one that's three quick maths

    • @Kyanzes
      @Kyanzes 4 ปีที่แล้ว +10

      Flying cars... you can't even have a sharpie that could change color. Say, red and black.

    • @santinodemaria2818
      @santinodemaria2818 4 ปีที่แล้ว +4

      @@ghotifish1838 topical meme reference

    • @unutentediyoutube3282
      @unutentediyoutube3282 4 ปีที่แล้ว +7

      Well it can also be 2=500-498

  • @Hypoli
    @Hypoli 4 ปีที่แล้ว +262

    My last words whispered in a final breath : "Don't forget the +1"

  • @leagueplays2100
    @leagueplays2100 5 ปีที่แล้ว +814

    i put it in my calculator and got 251501, that was easy

  • @blackpenredpen
    @blackpenredpen  5 ปีที่แล้ว +2244

    Did you know that 2 = 1 + 1?? I bet not!
    jk : )

    • @williamadams137
      @williamadams137 5 ปีที่แล้ว +93

      blackpenredpen No i don’t, i need a calculator to this

    • @snejpu2508
      @snejpu2508 5 ปีที่แล้ว +105

      That's pretty funnt, but sometimes such things are the most difficult to see, for example: we have f(x)=x^4+8x^3+18x^2+8x+17, and a question, for which x, the function f(x) is a prime. You can check infinitely many cases and never know the answer, but what makes this question easy (but on the other hand is not so obvious), is that 18=17+1. Because then we have (x^2+1)(x^2+8x+17), which has to be a prime. One of them has to be = 1, the other one has to be some prime then... We are left with only 2 cases, because we know, that 18=17+1. : )

    • @theolbiterator5408
      @theolbiterator5408 5 ปีที่แล้ว +60

      No but I knew 2= 0.9+1.1.

    • @chaitanyagadekar5025
      @chaitanyagadekar5025 5 ปีที่แล้ว +23

      I Known 2+2 = 5

    • @clubstepdj
      @clubstepdj 5 ปีที่แล้ว +37

      What i know is 5/2 = 2 with int data type

  • @mr.n1933
    @mr.n1933 5 ปีที่แล้ว +202

    Dafuq did i jusf watch.i lost it when the 2=1+1

  • @maheshagrawal7779
    @maheshagrawal7779 5 ปีที่แล้ว +626

    no 2=1+1/2+1/4+1/8+1/16...
    you have got many misconceptions blackpenredpen!!!

    • @iabervon
      @iabervon 5 ปีที่แล้ว +130

      When he writes 1, he's obviously just abbreviating 1/2+1/4+1/8+1/16+...

    • @InDstructR
      @InDstructR 5 ปีที่แล้ว +66

      @@iabervon and when he writes 1/2 he's abbreviating for 1/4+1/8+1/16+...

    • @agces2001
      @agces2001 5 ปีที่แล้ว +52

      @@InDstructR And when he writes 1/4 he's abbreviating 1/8 + 1/16 + 1/32+...

    • @InDstructR
      @InDstructR 5 ปีที่แล้ว +39

      @ki kus won't stop me,
      And when he writes 1/8 he's abbreviating 1/16+1/32+1/64+1/128+...

    • @shounakghosh8595
      @shounakghosh8595 5 ปีที่แล้ว +74

      Whoa that converged quickly

  • @tanmay8017
    @tanmay8017 3 ปีที่แล้ว +54

    I remember solving this exact question in my JEE ( Mains ) exam.

    • @classicmelodyvetrivel710
      @classicmelodyvetrivel710 2 ปีที่แล้ว +4

      @Sanat R mains usually has easy questions

    • @Avighna
      @Avighna 2 ปีที่แล้ว +1

      @Sanat R - Study Vlogs Sure, yeah, "easy question" 😬

    • @Avighna
      @Avighna 2 ปีที่แล้ว +1

      @Sanat R - Study Vlogs Woah, really? What kinda questions do they ask? Could you send me a link?

  • @steve2817
    @steve2817 5 ปีที่แล้ว +434

    1 + 1 = 3
    And sinx/n=six=6.

    • @rio_agustian_
      @rio_agustian_ 5 ปีที่แล้ว +64

      You stupid, 1 + 1 ≠ 3
      3 = 2 + 1
      π = 2 + 1
      π - 1 = 2

    • @CookieJar2025
      @CookieJar2025 5 ปีที่แล้ว +30

      @@rio_agustian_ so π = 3 lol nice discovery

    • @Kevin-14
      @Kevin-14 5 ปีที่แล้ว +84

      @@CookieJar2025 e = 3 = π

    • @SameerKhan-nd5qb
      @SameerKhan-nd5qb 5 ปีที่แล้ว +2

      @@rio_agustian_ noob

    • @SameerKhan-nd5qb
      @SameerKhan-nd5qb 5 ปีที่แล้ว +3

      @@Kevin-14 lool nooob

  • @ganaraminukshuk0
    @ganaraminukshuk0 5 ปีที่แล้ว +325

    "If you're using a calculator, why are you watching this video?"
    Sanity check.

  • @rd8396
    @rd8396 5 ปีที่แล้ว +388

    Take x ^2 + 3x = a
    Then in step 2
    a(a+2) + 1
    a^2 + 2a + 1
    = (a+1)^2

    • @mat1305h
      @mat1305h 5 ปีที่แล้ว +18

      Yes much easier, and you see it imediatly too.

    • @Polarspy
      @Polarspy 5 ปีที่แล้ว +10

      was about to say this, i think it's a lot more intuitive

    • @milanmitreski7657
      @milanmitreski7657 5 ปีที่แล้ว +36

      Isn't it beautiful how one problem can be solved in diffrent ways, even if the idea and the method are nearly the same. That's why we love maths.

    • @sanjaisrao484
      @sanjaisrao484 5 ปีที่แล้ว +1

      @@milanmitreski7657 Yes

    • @akshetpatial5466
      @akshetpatial5466 5 ปีที่แล้ว +1

      You extra smart boy the time required here will be same

  • @tiborgrun6963
    @tiborgrun6963 5 ปีที่แล้ว +114

    Not only 2 = 1+1, but also 0 = 1-1.
    From the second row:
    (x^2+3x+1-1)(x^2+3x+1+1)+1 and per the third binomial equation
    = (x^2+3x+1)^2 -1^2 +1
    = (x^2+3x+1)^2

    • @etemkaandelibas3649
      @etemkaandelibas3649 5 ปีที่แล้ว +1

      I didn't understand. Where did you use binomial expansion

    • @jinja3113
      @jinja3113 5 ปีที่แล้ว +7

      0 = 1-1
      1 = 1*1
      2= 1+1

    • @yogeshpathak73
      @yogeshpathak73 5 ปีที่แล้ว +10

      I didn't see any binomial here... But what i see is that you used the form (a+1)(a-1) + 1 = a^2 - 1 +1= a^2

    • @Bayerwaldler
      @Bayerwaldler 4 ปีที่แล้ว +5

      @@yogeshpathak73 I think Tibor Grün is from Germany. In German school curriculum the formula (a+b)*(a-b) = a^2 - b^2 is known as 3. binomial formula. b=1 is a special case.

    • @yogeshpathak73
      @yogeshpathak73 4 ปีที่แล้ว

      Oh ok... Didn't know that. Thanks.

  • @DatSwif
    @DatSwif 4 ปีที่แล้ว +8

    This is beautiful. I've been looking at it for five hours now

  • @dr3w199
    @dr3w199 5 ปีที่แล้ว +70

    Nice. I did it this way:
    Assume that the expression is a square number so:
    x(x+1)(x+2)(x+3)+1 = n^2
    x(x+1)(x+2)(x+3) = n^2 - 1
    x(x+1)(x+2)(x+3) = (n+1)(n-1)
    What I did then is realise that the factors of the product on the right differ by 2. Playing around you can find that:
    x(x+3) = x^2+3x = n-1
    (x+1)(x+2)=x^2+3x+2 = n+1
    So n = x^2 + 3x + 1
    Not as neat as your method though!
    Thanks for the video

    • @juanbomfim22
      @juanbomfim22 5 ปีที่แล้ว +1

      OMG ive almost done it completely. i just stopped at (n+1)(n-1) lol WD! i mean 'not that almost' lmao

    • @joshuamason2227
      @joshuamason2227 5 ปีที่แล้ว

      How do I play around with it

    • @dr3w199
      @dr3w199 5 ปีที่แล้ว +3

      @@joshuamason2227 Well you have the product of 3 binomials and a monomial for which we can multiply in any order. If you try a few cases, or think about it you spot that x(x+3) and (x+1)(x+2) have a difference of 2.

    • @joshuamason2227
      @joshuamason2227 5 ปีที่แล้ว

      @@dr3w199 okie

    • @sunnykarwani3556
      @sunnykarwani3556 4 ปีที่แล้ว

      Damn... It's a great method. Neat work. 💯

  • @chaitanyagadekar5025
    @chaitanyagadekar5025 5 ปีที่แล้ว +60

    0:09 That was PowerFul

  • @mhm6421
    @mhm6421 ปีที่แล้ว +7

    Continueing from: sqrt( (x^2 + 3x) (x^2 + 3x + 2) + 1 )
    let y = x^2 + 3x
    sqrt( y * (y + 1) + 1 )
    = sqrt( y^2 + y + 1 )
    = sqrt( (y+1)^2 )
    = y + 1
    = x^2 + 3x + 1
    = (x + 1) (x + 2) - 1
    = 501 * 502 - 1
    = 251501
    much easier to multiply :p

    • @razvy3827
      @razvy3827 ปีที่แล้ว

      that is what i wanted ti type nice 👍

  • @Inujasa88
    @Inujasa88 5 ปีที่แล้ว +396

    0:10 is this a pewdiepie reference? 😂😂

  • @workout9594
    @workout9594 4 ปีที่แล้ว +8

    3:20 I solved it differently.
    Let y= x^2+3x. Then substitute y into the expression making y(y+2)+1, distribute so y^2+2y+1 and that is a perfect square of (y+1)^2.
    Here, the square root and exponent cancel each other leaving y+1, sub back in x and then easily find the answer :)

    • @matthewmanzanares6798
      @matthewmanzanares6798 2 ปีที่แล้ว

      this is also what I did and I think that this is a bit better because you don't have to split 2 into 1 + 1 and do the rest

    • @cheesecircle3033
      @cheesecircle3033 ปีที่แล้ว

      That's what I did as well

  • @TheS1lentX
    @TheS1lentX 5 ปีที่แล้ว +72

    Jeez thats smart
    *proceeds to use the calculator to prove that 251501 is the right answer*

  • @thatssokwekwe
    @thatssokwekwe 2 ปีที่แล้ว +2

    I expressed it as sqrt((501.5-1.5)(501.5-0.5)(501.5+0.5)(501.5+1.5)+1)
    You get two a^2-b^2 expressions that you can multiply out, add the 1, and then factor into a squared quadratic expression
    Very neat and, as someone mentioned elsewhere, it generalizes to “1 plus the product of any four consecutive integers is a perfect square”

  • @detachedmars158
    @detachedmars158 5 ปีที่แล้ว +14

    You can also put a +1-1 inside the x^2+3x bracket and it'll be in the form of (a+b)(a-b).

    • @kilindogma9711
      @kilindogma9711 5 ปีที่แล้ว

      that's what i thought he was gonna do as well but what he did was cool as well.

    • @ssdd9911
      @ssdd9911 5 ปีที่แล้ว

      why?

    • @iabervon
      @iabervon 5 ปีที่แล้ว +1

      Yeah, (x-1)(x+1)+1=x^2-1^2+1 seems easier to find than multiplying out exactly the right portion of the big expression.

  • @isaacdeutsch2538
    @isaacdeutsch2538 4 ปีที่แล้ว +5

    I chose to make x = 502, which ends up yielding a nice difference of squares and a two term quadratic, which is much easier to distribute. The quartic you get has a palindromic pattern reminiscent of pure binomial coefficients, making it tempting to say the golden ratio is a root. It is, in fact, a root, so synthetically divide the quartic by the golden ratio identifying polynomial, x² - x - 1. You end up with the golden ratio identifying polynomial again, meaning that the original quartic in that square root is (x² - x - 1)², so cancel the power and the root. Plug 502 back in for x, some quick multiplying and subtracting by hand and you've got 251501.

  • @asa-ze1kn
    @asa-ze1kn 5 ปีที่แล้ว +34

    I'm only in 8th grade Algebra 1 but I was using variables to find how some of your factorizations works.
    You went from (x^2+3x)(x^2+3x+2)+1 to (x^2+3x)(x^2+3x+1)+(x^2+3x+1).
    What I did was set (x^2+3x) to a variable (a).
    (a)(a+2)+1
    a^2+2a+1
    (a+1)(a+1)
    Now substitute back in.
    (x^2+3x+1)(x^2+3x+1)
    When in doubt use variables..

    • @trueriver1950
      @trueriver1950 5 ปีที่แล้ว +1

      Yes, that's using even more algebra than BPRP did.

    • @zocker2586
      @zocker2586 5 ปีที่แล้ว +1

      Well yes because using the variables is actually the logic behind the solution, it's just that it was invisible throughout the process :D

    • @baranibarani4970
      @baranibarani4970 5 ปีที่แล้ว

      Where r u from?

    • @sanjanabiswas9774
      @sanjanabiswas9774 4 ปีที่แล้ว

      Agreed! Variables always help to proceed the solution.

    • @enricomassignani
      @enricomassignani 4 ปีที่แล้ว

      I put x=500 but multiplied everything. In the end i got to sqrt((x+y)^2) with x=500 and y=501^2

  • @blackflash9935
    @blackflash9935 5 ปีที่แล้ว +22

    5:48 “Back in my day kids would use *ALGEBRA* but now their brains are rotting from these darn *CALCULATORS* ”

  • @almightyhydra
    @almightyhydra 5 ปีที่แล้ว +11

    3:20 just put y = x^2 + 3x, then you have y(y+2) + 1 = y^2 + 2y + 1 = (y+1)^2. So the answer is y + 1, or x^2 + 3x + 1.

    • @cypherx7247
      @cypherx7247 5 ปีที่แล้ว +1

      I also did it in this way...but that way was also fine...its all about which method comes in your head first

    • @lasergamer2869
      @lasergamer2869 3 ปีที่แล้ว

      Dang that’s genius

  • @star_ms
    @star_ms 2 ปีที่แล้ว +2

    Seemingly elementary problems can have wonderfully elegant solutions! All we need is to substitute a number with x, and the magic begins.

  • @lucasxue2211
    @lucasxue2211 2 ปีที่แล้ว +11

    i remember my math teacher asking me to prove that n(n+1)(n+2)(n+3) + 1 is always a perfect square given that n is an integer

  • @snatchngrab8262
    @snatchngrab8262 3 ปีที่แล้ว +12

    The world needs more teachers like you. I'm more impressed by your teaching skills than any math. Much respect.

  • @agabe_8989
    @agabe_8989 5 ปีที่แล้ว +14

    0:01 that's my life philosophy now

  • @bucinoulje7505
    @bucinoulje7505 3 ปีที่แล้ว +1

    i watched this video this video right before my math competition and the same type of question came up on the task sheet. Thank you very much!

    • @bucinoulje7505
      @bucinoulje7505 3 ปีที่แล้ว

      for those wondering the question was
      202120212019(202120212021)(202120212023) all over 100010001 x (202120212021 squared +4)

  • @jekoddragon6227
    @jekoddragon6227 5 ปีที่แล้ว +433

    now do it with CALCULUS

    • @davidappell3105
      @davidappell3105 4 ปีที่แล้ว +2

      Why do you think this is funny?

    • @gabrielpinhal8325
      @gabrielpinhal8325 4 ปีที่แล้ว +40

      @@davidappell3105 because suffering is funny

    • @sanchit6107
      @sanchit6107 3 ปีที่แล้ว

      @@davidappell3105 Its FUNI

  • @pfever
    @pfever 5 ปีที่แล้ว +81

    Sorry...Time over! give me your exam!

  • @martinepstein9826
    @martinepstein9826 2 ปีที่แล้ว +3

    Nice factoring method but it might have taken me a while to spot. Multiplying out and factoring isn't so bad
    (x - 1)x(x + 1)(x + 2) + 1 = (x^2 - 1)(x^2 + 2x) + 1 = x^4 + 2x^3 - x^2 - 2x + 1 = (x^2 + bx +- 1)^2
    = x^4 + 2bx^3 + (b^2 +- 2)x^2 +- 2bx + 1
    We see this works if b = 1 and c = -1 so the answer is 501^2 + 501 - 1 = 500^2 + 2*500 + 1 + 500 = 251501

  • @SanjayKumar-wh6cd
    @SanjayKumar-wh6cd ปีที่แล้ว

    Another nice solution is to assume x=501.5
    And rewrite the equation which would give
    x⁴-(5/2) x²+(9/16) +1 which is basically (x²-5/4) ²
    The square and square root will cancel and give x²-5/4
    Taking lcm would give us
    ((2x)² - 5) /4
    (2x)²=1003² which can be computed very easily as 1003=1000+3
    And then we just have to subtract 5 and divide by 4

  • @imadkhan1825
    @imadkhan1825 5 ปีที่แล้ว +13

    You can also this as x^2+3x=t and expression would become t(t+2)+1 =(t+1)^2 this que came in practice test for jee last week And guess what i solved that 😎😎😎👍👍

  • @SawkTheFighter13
    @SawkTheFighter13 2 ปีที่แล้ว

    Why are your videos so entertaining? I'm so glad I came across this channel.

  • @ozonejgs2887
    @ozonejgs2887 5 ปีที่แล้ว +33

    I am so impressed with myself, I actually used the same method you did before watching the video =D

  • @yannisdekonoha
    @yannisdekonoha 3 ปีที่แล้ว +2

    When he drops the "Check this out", you know crazy stuff will happen on the board

  • @LudwigvanBeethoven2
    @LudwigvanBeethoven2 5 ปีที่แล้ว +67

    Every body knows 1+1=2 but i know 1+1 =/= 3

    • @blackpenredpen
      @blackpenredpen  5 ปีที่แล้ว +11

      ♫♪Ludwig van Beethoven♪♫ Hahahhaha

    • @jgsh8062
      @jgsh8062 3 ปีที่แล้ว +1

      I’ve got you all beat with 1+1 > 0

    • @JDguy11222
      @JDguy11222 3 ปีที่แล้ว

      @@jgsh8062 nah mine's better 1+1≠1+1

  • @laudine878
    @laudine878 5 ปีที่แล้ว +21

    Doing a PhD in Literary Studies, but stuff like this is why I absolutely love maths ♥

  • @MrShad
    @MrShad 5 ปีที่แล้ว +3

    What a incredible content. Im a student of math (i'll be a teacher in the future) from Brazil. Thank you so much for sharing knowledge!

  • @-Mohammed_S
    @-Mohammed_S 4 ปีที่แล้ว +2

    Your explanation is awesome . I like your teaching very much. Thanks

  • @DavidS-qn3jm
    @DavidS-qn3jm 5 ปีที่แล้ว +4

    I did assume there was a nice solution, but expanding under the root to get x^4 + 6x^3 + 11x^2 + 6x + 1 was pretty easy, and then matching coefficients in (x^2 + ax + 1)^2 was straightforward too.
    But yeah, the main thing is to replace 500 by x. I don't think I could intuitively see which two of the brackets would make it easier, and I'm not sure that's a better method than expanding the whole thing to only 4 terms (plus the one on the outside).

  • @tanmaygupta7778
    @tanmaygupta7778 8 หลายเดือนก่อน +1

    3:43
    If we assume x^2+3x to be t we get t + 1 whole squared which is a lot easier

  • @ammardaffa
    @ammardaffa 5 ปีที่แล้ว +8

    I know this kind of the prob, i use (n+1)(n+2)-1

  • @ultrio325
    @ultrio325 3 ปีที่แล้ว +1

    Just wanted to say after some work, some variable assigning and a lucky coincidence later, I found the answer!
    My steps:
    Let a=500
    Expand a(a+1)(a+2)(a+3) to a^4+6a^3+11a^2+6a+1
    Complete the square (or the fourth in this case):
    a^4+4a^3+6a^2+4a+1+2a^3+5a^2+2a
    =(a+1)^4+2a(a^2+2a+1+.5a)
    =(a+1)^4+2a((a+1)^2+.5a)
    =(a+1)^4+2a(a+1)^2+a^2
    Observe this follows the perfect square structure.
    Therefore:
    (a+1)^4+2a(a+1)^2+a^2
    =[(a+1)^2+a]^2
    Square rooting gives:
    (a+1)^2+a
    a^2+3a+1
    By substitution:
    a^2+3a+1
    =250000+1500+1
    =251501

  • @eannacoleman957
    @eannacoleman957 2 ปีที่แล้ว +3

    I love the explanation, though I did it a bit differently. When I got to the second line, I substituted (x²+3x) as y and found that that worked much simpler than distributing 2 as 1+1.

  • @tempomi760
    @tempomi760 3 ปีที่แล้ว +2

    Blew my mind! Earned yourself a new subscriber! Keep up the good work!👍

  • @jdsingh3607
    @jdsingh3607 5 ปีที่แล้ว +19

    Now this video makes me like algebra

    • @FermionClasses
      @FermionClasses 3 ปีที่แล้ว

      th-cam.com/video/XX2DI9E1zV8/w-d-xo.html

  • @cococh3607
    @cococh3607 4 ปีที่แล้ว

    I got the point. Convert the number into variables. For example 500=x or 2=1+1 = a (convert what you want)
    Thank you for the useful tips... I realized that the algebra is so amazing at the complicated situation.

  • @msmmath87
    @msmmath87 5 ปีที่แล้ว +4

    Really good solution! GOOD Teacher👍

  • @ugursoydan8187
    @ugursoydan8187 3 ปีที่แล้ว +1

    a very good perspective and a very good solution. thank you!!!

  • @LiegeNorth
    @LiegeNorth 3 ปีที่แล้ว +21

    this guy is a genius!

  • @Hecti161
    @Hecti161 5 ปีที่แล้ว +2

    The factorization was more if you defined a variable "a" that was equal to x^2+3x
    Because since you multiply and you have left
    (X^2+3X)(X^2+3X+2)+1
    With the variable "a" you had left
    (a)(a+2)+1
    And that is equal to (a^2+2a+1)
    And that is factorizable as (a+1)^2
    Greetings from Mexico

  • @hellopeter121
    @hellopeter121 5 ปีที่แล้ว +74

    What Everybody knows : 1+1=2
    What BPRP knows : 2=1+1
    .
    .
    .
    .
    .
    What I know : 1+1=2 and 2=1+1
    😇😇😇😇😇😇😇😇😇😇😇

  • @adrianau5231
    @adrianau5231 5 ปีที่แล้ว +1

    Actually why not:
    √(500)(501)(502)(503)+1 = x
    500.501.502.503 +1 = x²
    500.501.502.503 = x²-1
    (500.503) (501.502) =(x-1)(x+1)
    251500 × 251502 = (x-1) (x+1)
    x = ±251501 but we have to reject -251501 because it is negative in a square root

  • @paawanjethva
    @paawanjethva 5 ปีที่แล้ว +11

    Everybody knows e^{iτ}=1
    .
    .
    .
    .
    But I know 1=e^{iτ}

    • @blackpenredpen
      @blackpenredpen  5 ปีที่แล้ว

      Nice!!!

    • @paawanjethva
      @paawanjethva 5 ปีที่แล้ว +2

      @@日本人じゃありません That's e^{iπ}. τ=2π

    • @fgvcosmic6752
      @fgvcosmic6752 5 ปีที่แล้ว +1

      My mans using tau! Up top!

    • @peterg644
      @peterg644 5 ปีที่แล้ว

      @@日本人じゃありません he's using tau not pi

  • @ridwansetiadi8393
    @ridwansetiadi8393 5 ปีที่แล้ว

    If somebody can't understand 3:59, you can try another method; you can also substitute the line 3 of 'Obs' into another variable, for example: y
    If: y = x²+3x
    Then the equation becomes:
    = (y+2)(y)+1
    = y²+2y+1
    Factorize that into this:
    = (y+1)²
    So, sqrt[(y+1)²] = y+1
    Since y = x²+3x
    The equation becomes:
    = x²+3x+1
    Since x = 500
    The result is:
    = (500)²+3(500)+1
    = 251501

  • @DarkRedZane
    @DarkRedZane 4 ปีที่แล้ว +5

    I have never been so hyped at 2 = 1+1 before.

  • @gedlangosz1127
    @gedlangosz1127 5 ปีที่แล้ว

    Solved it!
    For a clean solution to exist I assumed that
    x·(x + 1)·(x + 2)·(x + 3) + 1 is a perfect square for any integer x.
    Playing around with x = 1 & x = 2 it is quickly apparent that
    x·(x + 3) + 1 is a contender for the solution.
    It is easy to prove that this is the solution by expanding out
    [x·(x + 3) + 1]² and showing that it is equivalent to x·(x + 1)·(x + 2)·(x + 3) + 1
    I doubt I would have spotted the algebraic manipulation that BPRP used without knowing the solution first. I also learn something new i.e. the product of four consecutive integers plus 1 is always a perfect square.
    Thank you for the video - I enjoyed this one.

  • @kinyutaka
    @kinyutaka 5 ปีที่แล้ว +7

    I'm doing this on the toilet, so I only hope I'm starting correctly, with (500)(502)=(501²-1) and (501)(503)=(502²-1)
    But then again, we could cheat and go with (501)(502)=(501½²-¼) and (500)(503)=(501½²-9/4)?

  • @backyard282
    @backyard282 5 ปีที่แล้ว +1

    you can also use substitution x^2+3x = t and you get t(t+2)+1=t^2+2t+1=(t+1)^2 and replace t: (x^2+3x+1)^2

  • @joaoaugusto9221
    @joaoaugusto9221 4 ปีที่แล้ว +6

    You could also do like:
    Consider 501 as “x” and 502 as “y”
    You can rewrite the sentence like:
    (x-1).(x+1).(y-1).(y+1) +1
    That’s equal to:
    (x^2 - 1^2).(y^2 - 1^2) +1
    Or
    (501^2 - 1).(502^2 - 1) +1
    And there’s your answer xD!!

  • @ZiebartPatel
    @ZiebartPatel 5 ปีที่แล้ว +1

    A generalisation of the algebraic expression - (X)(X+1)(X+2)(X+2)+1= (Y)^2

  • @whyit487
    @whyit487 5 ปีที่แล้ว +11

    I love your videos about not using calculators (Like the Wolfram-Alpha video)! They're the best! Keep up the good work! It's nice going back to algebra sometimes...

    • @blackpenredpen
      @blackpenredpen  5 ปีที่แล้ว +1

      Why It?
      Yea me too. I try to mix things up a bit.

  • @deathzonesimang8043
    @deathzonesimang8043 5 ปีที่แล้ว +1

    If you guys want to know the “secret”, it is if the sum of the digits in any number add up to a multiple of 3, it is divisible by 3.
    E.g 567: 5+6+7=18. 18 is a multiple of 3 thus 567 is divisible by 3.

    • @deathzonesimang8043
      @deathzonesimang8043 5 ปีที่แล้ว

      @Cerebro Spinal I was referring to the part at the end of the video

  • @dev.imperatus6105
    @dev.imperatus6105 5 ปีที่แล้ว +5

    Hmmm ive got an easier way when you use 1 + 1 instead of 2
    Here is how I do according to you:
    (x^2+3x+2)(x^2+3x+1)
    =(x^2+3x)^2 +2 then
    √((x^2+3x)^2 +2) = x^2+3x+1

    • @XWurstbrotX
      @XWurstbrotX 5 ปีที่แล้ว

      You can't solve squareroots of sums like that, eventhought your result is correct.

  • @jcb3393
    @jcb3393 4 ปีที่แล้ว

    I did it by recognizing that (x^2+3x)(x^2+3x+2) is easily simplified with a substitution of y=(x^2+3x+1). It simplifies to (y-1)(y+1) = y^2 - 1. Since we have a "+1" hanging out after the 4-term product, that gets rid of the "-1" in our simplified expression, yielding just y^2 under the radical sign. square root of y^2 = y. That means the solution is our substitution: y=(x^2+3x+1). Plugging in 500 for x gives us 251501.

  • @-a5624
    @-a5624 5 ปีที่แล้ว +8

    I know this is not related to this video but I wanted to post this on a new video so you might see it :) your trick for integrals of thinking "wouldn't it be nice if..." has helped me so so much, so thank you :) love your videos!

  • @mesballo2224
    @mesballo2224 3 ปีที่แล้ว

    Your way to solve this is pretty AWESOME!! First I multiplied all together, i got x^4 + 6x^3 + 11x^2 + 6x + 1 then i calculate this polynomial for x=1 x=2 x=3 ....all the time i got a square!! I was really surprise!! I didn't expect x(x+1)(x+2)(x+3)+1 to be a perfect square for all x at all!!! This is incredible!! Thanks for sharing your knowledge you are very inspiring to me

  • @sadeekmuhammadryan4894
    @sadeekmuhammadryan4894 2 ปีที่แล้ว +5

    There are things to learn from each of your videos 😁❤️

    • @deadvirgin428
      @deadvirgin428 10 หลายเดือนก่อน

      Well yes, that's the point.

  • @gaetanocantisani3762
    @gaetanocantisani3762 5 ปีที่แล้ว +1

    I find the solution in a different way:
    k(k+1)(k+2)(k+3)=x^2-1
    =(x-1)(x-2),
    and the difference between these number is 2;
    so multiplying
    k(k+3)=k^2+3k
    (k+1)(k+2)=k^2+3k+2
    I have the numbers with desidered difference.
    So x=k(k+3)+1, having the result with substitution 500->k.

  • @aikenkazim5318
    @aikenkazim5318 5 ปีที่แล้ว +4

    please give an example differentiation of complex functions

  • @ericli2723
    @ericli2723 5 ปีที่แล้ว +1

    An alternative way to solve it is by letting x = 501.5 and change the expression into
    sqrt((x - 3/2)(x - 1/2)(x + 1/2)(x + 3/2) + 1)
    The inspiration for this is difference of squares, simplifying gives.
    = sqrt( (x^2 - 9/4)(x^2 - 1/4) + 1)
    = sqrt( x^4 - 10/4(x^2) + 9/16 + 1)
    = sqrt(x^4 - 5/2(x^2) + 25/16)
    = sqrt((x^2 - 5/4)^2) , *factors nicely, perfect square*
    = x^2 - 5/4
    = (501.5)^2 - 1.25
    = 251501

    • @cfgauss71
      @cfgauss71 4 ปีที่แล้ว

      Except the 501.5^2 part is not so pleasant by hand. Not the best alternative.

  • @Kino-Imsureq
    @Kino-Imsureq 5 ปีที่แล้ว +55

    BPRP know 2 = 1+1
    I know 2 = 2
    what happened to the comment button its gray

    • @jinja3113
      @jinja3113 5 ปีที่แล้ว +1

      I know 2 = two

  • @reza1219
    @reza1219 3 ปีที่แล้ว +1

    if only most teachers were like this guy, it actually makes me wanna learn math again and I'm 29 years old! not gonna lie that did look fun for some reason.

  • @mango417
    @mango417 4 ปีที่แล้ว +4

    "And now, here's the deal"… You know that when he pronounces that phrase things are 'bout to get complicated.

  • @denisikonomi2019
    @denisikonomi2019 3 ปีที่แล้ว

    If you guys want a tip to make the solution simpler
    Set 501 as x instead of 500
    That way (x-1)(x)(x+1)(x+2)+1 is under the square root
    Which many can see the only tedious multiplying we’d have to do is (x^2 - 1)(x^2 + 2)
    You’ll then find the equation to be
    x^2 + x - 1
    Which gives the same result
    Just helps save space and makes the problem less tedious

  • @noverdy
    @noverdy 5 ปีที่แล้ว +19

    Everybody know e^2.pi.i = 1
    .
    .
    But I know 1 = e^2.pi.i

    • @mundane3809
      @mundane3809 5 ปีที่แล้ว

      Wrong it's
      - (e ^ pi × i)

    • @nikolas9105
      @nikolas9105 5 ปีที่แล้ว +3

      @@mundane3809 Nice try but thats -1
      ignoring your name

    • @mundane3809
      @mundane3809 5 ปีที่แล้ว

      @@nikolas9105 no
      e ^ ( pi × i ) = -1
      So if you make -1 negative, it become positive.

    • @RunstarHomer
      @RunstarHomer 5 ปีที่แล้ว +2

      @@mundane3809 you are correct but the original comment was also correct. e^2πi = 1.

    • @mundane3809
      @mundane3809 5 ปีที่แล้ว

      @@RunstarHomer oof yea it's actually correct. sorry for the mistake!

  • @SpongeDude8
    @SpongeDude8 5 ปีที่แล้ว

    More impressed with how someone came up with the question

  • @moosemoosington1441
    @moosemoosington1441 2 ปีที่แล้ว +5

    Dude, I always had a good grasp on algebra as a kid and in highschool I always aced most algebra, but somehow my teachers (and I) missed this property of algebraic equations. So freaking cool. It has been nigh on 15 years since high school, but I am still learning new and cool algebra. Thanks so much blackpenredpen!

  • @谢天陈
    @谢天陈 3 ปีที่แล้ว +1

    what about using x.
    First allow the equation equal to x, then square both sides and then both sides minus 1. We get (x+1)(x-1)=(500)(501)(502)(503). Then I found out that (500)(503)is two less than (502)(501) and the answer would be 500*503+1=251501. The last step can be done be simple calculation, no calculator needed.

  • @Mothuzad
    @Mothuzad 3 ปีที่แล้ว +4

    Shout-out to my colorblind fam who can never tell when he switches pens

  • @MrJdcirbo
    @MrJdcirbo 5 ปีที่แล้ว

    I multiplied everything out and got stuck... This is a brilliant solution. One day I will achieve this type of mathematical intuition. Lead the way, blackpenredpen!!!

  • @DriffPL
    @DriffPL 5 ปีที่แล้ว +4

    I think you forgot about the absolute value; Square root of a 2nd power produces absolute value result because both positive and negative values are true.

    • @bttfish
      @bttfish 5 ปีที่แล้ว +2

      Dunkoro it is obvious that the number inside the square root is positive,so ignore the absolute value symbol

  • @tomerwolberg37
    @tomerwolberg37 5 ปีที่แล้ว +1

    You could have made it simpler using the (a-b)(a+b)=a^2-b^2 formula.
    (x^2+3x)(x^2+3x+2)+1 =
    (x^2+3x+1-1)(x^2+3x+1+1)+1 =
    (x^2+3x+1)^2-1^2+1 =
    (x^2+3x+1)^2

  • @ishmeetsingh1146
    @ishmeetsingh1146 5 ปีที่แล้ว +5

    Wow your method and my method are similar .....I had take the whole expression as y and then square it and then assume x to be 500 and multiplied and had taken x^2+3x to be z and at end I got y=z+1 that is y = x^2 + 3x + 1 and it's done

  • @vudomath
    @vudomath 4 ปีที่แล้ว

    At 3:45, you could also treat the first factor as (x^2+3x+1-1) so together with the second factor you have (x^2+3x+1-1)(x^2+3x+1+1) = difference of squares ((x^2+3x+1)^2 - 1. Plus the extra 1 on the outside you get the perfect square.

  • @黎真-e3f
    @黎真-e3f 5 ปีที่แล้ว +3

    The conclusion of this question is : [ First number + second number ^2 ]

  • @martinteichert9209
    @martinteichert9209 5 ปีที่แล้ว +1

    the easier way would be to solve it symmetrically:
    lets say x equals 501,5 in this case.. then the product would be (x-1,5)(x+1,5)(x-0,5)(x+0,5)+1=
    (x^2-2,25)(x^2-0,25)+1=
    x^4-2,5*x^2+0,5625+1
    which is obviously
    (x^2-1,25)^2

  • @enzoTHEferrari
    @enzoTHEferrari 5 ปีที่แล้ว +15

    I understood everything until the bit at 4:35 - 5:04
    What do you mean by "factoring out"?

    • @AE-rg5rc
      @AE-rg5rc 5 ปีที่แล้ว

      When a number repeats itself in an addition you can factor it out, basically do the inverse of distributive property. So we have x²+3x+1 repeating in both therms. You can factor it out and you will be left with x²+3x+1 ( x²+3x +1), equivalent to x²+3x+1( x²+3x) + x²+3x+1 (1)

    • @leif1075
      @leif1075 5 ปีที่แล้ว

      @@AE-rg5rc but thats just squaring it and you don't have two of the sake expression..you don't jave twobx squared plus 3x plus 2 you only,have one

    • @ViratKohli-jj3wj
      @ViratKohli-jj3wj 5 ปีที่แล้ว +1

      @@leif1075 please Learn some math, this is for grade 6 atleast in asian countries.

    • @leif1075
      @leif1075 5 ปีที่แล้ว

      @@ViratKohli-jj3wj I know some math, thanks very much..I had a valid question

  • @user-yg97f5hfvh
    @user-yg97f5hfvh 5 ปีที่แล้ว +1

    You may substitute x^2+3x = t and make t(t+2)+1 = t^2+2x+1 so square root of t^2+2x+1 is t+1=x^2+3x+1(same)

  • @GodzillaFreak
    @GodzillaFreak 5 ปีที่แล้ว +3

    Just do the multiplication by hand.

  • @avisinha9331
    @avisinha9331 2 ปีที่แล้ว +1

    Just say x^2+3x = y
    y(y+2) + 1
    = y^2+2y +1
    =( y+1)^2
    Comes out of root as
    (Y+1)
    = x^2+3x + 1
    And put the values

  • @alexsandroagustini714
    @alexsandroagustini714 4 ปีที่แล้ว +3

    Him: Starts the video with 1+1=2
    Me: *ok we are getting somewhere now

  • @curtisw0234
    @curtisw0234 ปีที่แล้ว +1

    Why not substitute y=x^2 + 3x then you can expand that to get y^2 + 2y + 1 = (y+1)^2. Perfect for cancelling out the square root