The Attention Mechanism in Large Language Models

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ม.ค. 2025

ความคิดเห็น • 192

  • @arvindkumarsoundarrajan9479
    @arvindkumarsoundarrajan9479 ปีที่แล้ว +58

    I have been reading the "attention is all you need" paper for like 2 years. Never understood it properly like this ever before😮. I'm so happy now🎉

  • @RG-ik5kw
    @RG-ik5kw ปีที่แล้ว +39

    Your videos in the LLM uni are incredible. Builds up true understanding after watching tons of other material that was all a bit loose on the ends. Thank you!

  • @malikkissoum730
    @malikkissoum730 ปีที่แล้ว +16

    Best teacher on the internet, thank you for your amazing work and the time you took to put those videos together

  • @drdr3496
    @drdr3496 11 หลายเดือนก่อน +3

    This is a great video (as are the other 2) but one thing that needs to be clarified is that the embeddings themselves do not change (by attention @10:49). The gravity pull analogy is appropriate but the visuals give the impression that embedding weights change. What changes is the context vector.

  • @GrahamAnderson-z7x
    @GrahamAnderson-z7x 8 หลายเดือนก่อน +5

    I love your clear, non-intimidating, and visual teaching style.

    • @SerranoAcademy
      @SerranoAcademy  8 หลายเดือนก่อน +1

      Thank you so much for your kind words and your kind contribution! It’s really appreciated!

  • @MrProgrammer-yr1ed
    @MrProgrammer-yr1ed หลายเดือนก่อน +2

    This video is amazing!
    Appreciate Luis for his skill of explaining PhD level concepts as easier that 9th grade student can understand.
    I found this channel is a diamond mine for beginners.
    Thanks Luis.

  • @gunjanmimo
    @gunjanmimo ปีที่แล้ว +9

    This is one of the best videos on TH-cam to understand ATTENTION. Thank you for creating such outstanding content. I am waiting for upcoming videos of this series. Thank you ❤

  • @bobae1357
    @bobae1357 10 หลายเดือนก่อน +4

    best description ever! easy to understand. I've been suffered to understanding attention. Finally I can tell I know it!

  • @Compsci-v6q
    @Compsci-v6q 4 หลายเดือนก่อน +2

    This channel is uderrated, your explainations is the best among other channels

  • @JyuSub
    @JyuSub 10 หลายเดือนก่อน +3

    Just THANK YOU. This is by far the best video on the attention mechanism for people that learn visually

  • @Aidin-f5v
    @Aidin-f5v 2 หลายเดือนก่อน +1

    That was awesome, Thank you.
    You saved me a lot of time reading and watching none-sense videos and texts
    .

  • @saeed577
    @saeed577 11 หลายเดือนก่อน +3

    THE best explanation of this concept. That was genuinely amazing.

  • @EricMutta
    @EricMutta ปีที่แล้ว +19

    Truly amazing video! The published papers never bother to explain things with this level of clarity and simplicity, which is a shame because if more people outside the field understood what is going on, we may have gotten something like ChatGPT about 10 years sooner! Thanks for taking the time to make this - the visual presentation with the little animations makes a HUGE difference!

  • @FawadMahdi-o2h
    @FawadMahdi-o2h 4 หลายเดือนก่อน +1

    This was hands down the best explanation I've seen of attention mechanisms and multi head attention --- the fact I'm able to use these words in this sentence means I understand it

  • @TheMircus224
    @TheMircus224 ปีที่แล้ว +1

    These videos where you explain the transformers are excellent. I have gone through a lot of material however, it is your videos that have allowed me to understand the intuition behind these models. Thank you very much!

  • @apah
    @apah ปีที่แล้ว +4

    So glad to see you're still active Luis ! You and Statquest's Josh Stamer really are the backbone of more ml professionals than you can imagine

  • @anipacify1163
    @anipacify1163 10 หลายเดือนก่อน +1

    Omg this video is on a whole new level . This is prolly the best intuition behind the transformers and attention. Best way to understand. I went thro' a couple of videos online and finally found the best one . Thanks a lot ! Helped me understand the paper easily

  • @nealdavar939
    @nealdavar939 9 หลายเดือนก่อน +1

    The way you break down these concepts is insane. Thank you

  • @amoghjain
    @amoghjain ปีที่แล้ว +2

    Thank you for making this video series for the sake of a learner and not to show off your own knowledge!! Great anecdotes and simple examples really helped me understand the key concepts!!

  • @aadeshingle7593
    @aadeshingle7593 ปีที่แล้ว +4

    One of the best intuitions for understanding multi-head attention. Thanks a lot!❣

  • @decryptifi2265
    @decryptifi2265 2 หลายเดือนก่อน

    What a beautiful way of explaining "Attention Mechanism". Great job Serano

  • @calum.macleod
    @calum.macleod ปีที่แล้ว +11

    I appreciate your videos, especially how you can apply a good perspective to understand the high level concepts, before getting too deep into the maths.

  • @ronitakhariya4094
    @ronitakhariya4094 หลายเดือนก่อน

    absolutely loved the last part with explaining linear transformations of query key and values. thank you so much!

  • @mohameddjilani4109
    @mohameddjilani4109 ปีที่แล้ว +1

    I really enjoyed how you give a clear explanation of the operations and the representations used in attention

  • @ccgarciab
    @ccgarciab 10 หลายเดือนก่อน +2

    This is such a good, clear and concise video. Great job!

  • @ajnbin
    @ajnbin ปีที่แล้ว +1

    Fantastic !!! The explanation itself is a piece of art.
    The step by step approach, the abstractions, ... Kudos!!
    Please more of these

  • @pruthvipatel8720
    @pruthvipatel8720 ปีที่แล้ว +7

    I always struggled with KQV in attention paper. Thanks a lot for this crystal clear explanation!
    Eagerly looking forward to the next videos on this topic.

  • @s.chandrasekhar8290
    @s.chandrasekhar8290 ปีที่แล้ว

    ¡Gracias!

    • @SerranoAcademy
      @SerranoAcademy  ปีที่แล้ว +1

      Muchisimas gracias por tu colaboración!!! Que amable!

  • @PedroTrujilloV
    @PedroTrujilloV 2 หลายเดือนก่อน

    Thanks!

  • @sayamkumar7276
    @sayamkumar7276 ปีที่แล้ว +10

    This is one of the clearest, simplest and the most intuitive explanations on attention mechanism.. Thanks for making such a tedious and challenging concept of attention relatively easy to understand 👏 Looking forward to the impending 2 videos of this series on attention

  • @kevon217
    @kevon217 ปีที่แล้ว +1

    Wow, clearest example yet. Thanks for making this!

  • @arulbalasubramanian9474
    @arulbalasubramanian9474 ปีที่แล้ว +1

    Great explanation. After watching a handful of videos this one really makes it real easy to understand.

  • @k.i.a7240
    @k.i.a7240 26 วันที่ผ่านมา

    The world needs people like Serrano more, who explain the shit out of ambiguities and lead us back to the age of wisdom.

  • @abu-yousuf
    @abu-yousuf ปีที่แล้ว +1

    amazing explanation Luis. Can't thank you enough for your amazing work. You have a special gift to explain things. Thanks.

  • @docodemo727
    @docodemo727 ปีที่แล้ว +1

    this video is really teaching you the intuition. much better than the others I went through that just throw formula to you. thanks for the great job!

  • @soumen_das
    @soumen_das ปีที่แล้ว +2

    Hey Louis, you are AMAZING! Your explanations are incredible.

  • @rikiakbar4025
    @rikiakbar4025 6 หลายเดือนก่อน

    Thanks Luis, been following your contents for a while. This video about attention mechanism is very intuitive and easy to follow

  • @agbeliemmanuel6023
    @agbeliemmanuel6023 ปีที่แล้ว +3

    Wooow thanks so much. You are a treasure to the world. Amazing teacher of our time.

  • @karlbooklover
    @karlbooklover ปีที่แล้ว +2

    best explanation of embeddings I've seen, thank you!

  • @pranayroy
    @pranayroy 11 หลายเดือนก่อน +1

    Kudos to your efforts in clear explanation!

  • @sari54754
    @sari54754 ปีที่แล้ว +1

    The most easy to understand video for the subject I've seen.

  • @DiegoSilva-dv9uf
    @DiegoSilva-dv9uf 6 หลายเดือนก่อน

    Valeu!

    • @SerranoAcademy
      @SerranoAcademy  6 หลายเดือนก่อน

      @DiegoSilva-dv9uf Thank you so much for your kind contribution Diego!

  • @guru7856
    @guru7856 3 หลายเดือนก่อน

    Thank you for your explanation! I've always wondered why the attention mechanism in Transformers produces more effective embeddings compared to Word2Vec, and your video clarified this well. Word2Vec generates static embeddings, meaning that a word always has the same representation, regardless of the context in which it appears. In contrast, Transformers create context-dependent embeddings, where the representation of a word is influenced by the words around it. This dynamic approach is what makes Transformer embeddings so powerful.

  • @iliasp4275
    @iliasp4275 7 หลายเดือนก่อน +1

    Excellent video. Best explanation on the internet !

  • @JorgeMartinez-xb2ks
    @JorgeMartinez-xb2ks ปีที่แล้ว

    El mejor video que he visto sobre la materia. Muchísimas gracias por este gran trabajo.

  • @MikeTon
    @MikeTon 11 หลายเดือนก่อน

    This clarifies EMBEDDED matrices :
    - In particular the point on how a book isn't just a RANDOM array of words, Matrices are NOT a RANDOM array of numbers
    - Visualization for the transform and shearing really drives home the V, Q, K aspect of the attention matrix that I have been STRUGGLING to internalize
    Big, big thanks for putting together this explanation!

  • @dragolov
    @dragolov ปีที่แล้ว +1

    Deep respect, Luis Serrano! Thank you so much!

  • @davutumut1469
    @davutumut1469 ปีที่แล้ว +1

    amazing, love your channel. It's certainly underrated.

  • @RamiroMoyano
    @RamiroMoyano ปีที่แล้ว +1

    This is amazingly clear! Thank for your your work!

  • @tanggenius3371
    @tanggenius3371 6 หลายเดือนก่อน

    Thanks, the explaination is so intuitive. Finally understood the idea of attention.

  • @perpetuallearner8257
    @perpetuallearner8257 ปีที่แล้ว +1

    You're my fav teacher. Thank you Luis 😊

  • @dr.mikeybee
    @dr.mikeybee ปีที่แล้ว +2

    Nicely done! This gives a great explanation of the function and value of the projection matrices.

  • @唐伟祚-j4v
    @唐伟祚-j4v 10 หลายเดือนก่อน

    It's so great, I finally understand these qkvs, it bothers me so long. Thank you so much !!!

  • @hkwong74531
    @hkwong74531 ปีที่แล้ว

    I subscribe your channel immediately after watching this video, the first video I watch from your channel but also the first making me understand why embedding needs to be multiheaded. 👍🏻👍🏻👍🏻👍🏻

  • @mayyutyagi
    @mayyutyagi 6 หลายเดือนก่อน

    Amazing video... Thanks sir for this pictorial representation and explaining this complex topic with such an easy way.

  • @homakashefiamiri3749
    @homakashefiamiri3749 3 หลายเดือนก่อน

    It was the most useful video explaining attention mechanism. Thank you

  • @yairbh
    @yairbh 6 หลายเดือนก่อน

    Great explanation with the linear transformation matrices. Thanks!

  • @LuisOtte-pk4wd
    @LuisOtte-pk4wd 11 หลายเดือนก่อน

    Luis Serrano you have a gift for explain! Thank you for sharing!

  • @DeepakSharma-xg5nu
    @DeepakSharma-xg5nu 10 หลายเดือนก่อน

    I did not even realize this video is 21 minutes long. Great explanation.

  • @kafaayari
    @kafaayari ปีที่แล้ว

    Well the gravity example is how I understood this after a long time. you are true legend.

  • @justthefactsplease
    @justthefactsplease 10 หลายเดือนก่อน +1

    What a great explanation on this topic! Great job!

  • @Omsip123
    @Omsip123 7 หลายเดือนก่อน +1

    Outstanding, thank you for this pearl of knowledge!

  • @bananamaker4877
    @bananamaker4877 ปีที่แล้ว +1

    Explained very well. Thank you so much.

  • @caryjason4171
    @caryjason4171 9 หลายเดือนก่อน

    This video helps to explain the concept in a simple way.

  • @ThinkGrowIndia
    @ThinkGrowIndia ปีที่แล้ว +1

    Amazing! Loved it! Thanks a lot Serrano!

  • @satvikparamkusham7454
    @satvikparamkusham7454 ปีที่แล้ว

    This is the most amazing video on "Attention is all you need"

  • @WhatsAI
    @WhatsAI ปีที่แล้ว +1

    Amazing explanation Luis! As always...

  • @VenkataraoKunchangi-uy4tg
    @VenkataraoKunchangi-uy4tg 8 หลายเดือนก่อน

    Thanks for sharing. Your videos are helping me in my job. Thank you.

  • @alijohnnaqvi6383
    @alijohnnaqvi6383 11 หลายเดือนก่อน +1

    What a great video man!!! Thanks for making such videos.

  • @cyberpunkdarren
    @cyberpunkdarren 10 หลายเดือนก่อน

    Very impressed with this channel and presenter

  • @orcunkoraliseri9214
    @orcunkoraliseri9214 10 หลายเดือนก่อน

    I watched a lot about attentions. You are the best. Thank you thank you. I am also learning how to explain of a subject from you 😊

  • @erickdamasceno
    @erickdamasceno ปีที่แล้ว +2

    Great explanation. Thank you very much for sharing this.

  • @muhammetibrahimkaraman7471
    @muhammetibrahimkaraman7471 3 หลายเดือนก่อน

    I've really enjoyed with that way of you described and demonstrated matrices as linear transformations. Thank you! Why, because I like Linear Algebra 😄

  • @mostinho7
    @mostinho7 ปีที่แล้ว +1

    7:00 even with word embedding, words can be missing context and there’s no way to tell like the word apple. Are you taking about the company or the fruit?
    Attention matches each word of the input with every other word, in order to transform it or pull it towards a different location in the embedding based on the context. So when the sentence is “buy apple and orange” the word orange will cause the word apple to have an embedding or vector representation that’s closer to the fruit
    8:00

  • @sathyanukala3409
    @sathyanukala3409 10 หลายเดือนก่อน

    Excellent explanation. Thank you very much.

  • @hyyue7549
    @hyyue7549 ปีที่แล้ว +3

    If I understand correctly, the transformer is basically a RNN model which got intercepted by bunch of different attention layers. Attention layers redo the embeddings every time when there is a new word coming in, the new embeddings are calculated based on current context and new word, then the embeddings will be sent to the feed forward layer and behave like the classic RNN model.

    • @lohithArcot
      @lohithArcot 4 หลายเดือนก่อน

      Can anyone confirm this?

  • @Cdictator
    @Cdictator 6 หลายเดือนก่อน

    This is amazing explanation! Thank you so much 🎉

  • @debarttasharan
    @debarttasharan ปีที่แล้ว +1

    Incredible explanation. Thank you so much!!!

  • @BhuvanDwarasila-y8x
    @BhuvanDwarasila-y8x 4 หลายเดือนก่อน

    Thank you so much for the attention to the topic!

    • @SerranoAcademy
      @SerranoAcademy  3 หลายเดือนก่อน

      Thanks! Lol, I see what you did there! :D

  • @jayanthAILab
    @jayanthAILab 10 หลายเดือนก่อน

    Wow wow wow! I enjoyed the video. Great teaching sir❤❤

  • @vishnusharma_7
    @vishnusharma_7 ปีที่แล้ว

    You are great at teaching Mr. Luis

  • @tvinay8758
    @tvinay8758 ปีที่แล้ว

    This is an great explanation of attention mechanism . I have enjoyed your maths for machine learning on coursera. Thank you for creating such wonderful videos

  • @orcunkoraliseri9214
    @orcunkoraliseri9214 10 หลายเดือนก่อน

    Wooow. Such a good explanation for embedding. Thanks 🎉

  • @arshmaanali714
    @arshmaanali714 5 หลายเดือนก่อน

    Superb explanation❤ please make more videos like this

  • @SulkyRain
    @SulkyRain ปีที่แล้ว

    Amazing explanation 🎉

  • @bengoshi4
    @bengoshi4 ปีที่แล้ว

    Yeah!!!! Looking forward to the second one!! 👍🏻😎

  • @ignacioruiz3732
    @ignacioruiz3732 10 หลายเดือนก่อน

    Outstanding video. Amazing to gain intuition.

  • @sukhpreetlotey1172
    @sukhpreetlotey1172 10 หลายเดือนก่อน

    First of all thank you for making these great walkthroughs of the architecture. I would really like to support your effort on this channel. let me know how I can do that. thanks

    • @SerranoAcademy
      @SerranoAcademy  10 หลายเดือนก่อน

      Thank you so much, I really appreciate that! Soon I'll be implementing subscriptions, so you can subscribe to the channel and contribute (also get some perks). Please stay tuned, I'll publish it here and also on social media. :)

  • @HoussamBIADI
    @HoussamBIADI 6 หลายเดือนก่อน

    Thank you for this amazing explanation

  • @bbarbny
    @bbarbny 7 หลายเดือนก่อน

    Amazing video, thank you very much for sharing!

  • @maysammansor
    @maysammansor 10 หลายเดือนก่อน

    you are a great teacher. Thank you

  • @notprof
    @notprof ปีที่แล้ว

    Thank you so much for making these videos!

  • @bankawat1
    @bankawat1 ปีที่แล้ว

    Thanks for the amazing videos! I am eagrly waiting for the third video. If possible please do explain the bit how the K,Q,V matrices are used on the decoder side. That would be great help.

  • @neelkamal3357
    @neelkamal3357 4 หลายเดือนก่อน +1

    I didn't get it on why do we add linear transformation like earlier too we had embeddings in other planes then why do shear transformation ? Please someone answer

  • @drintro
    @drintro 11 หลายเดือนก่อน

    Excellent description.

  • @traveldiaries347
    @traveldiaries347 ปีที่แล้ว

    Very well explained ❤

  • @aaalexlit
    @aaalexlit ปีที่แล้ว

    That's an awesome explanation! Thanks!

  • @bravulo
    @bravulo ปีที่แล้ว

    Thanks. I saw also your "Math behind" video, but still missing the third in the series.

    • @SerranoAcademy
      @SerranoAcademy  ปีที่แล้ว +2

      Thanks! The third video is out now! th-cam.com/video/qaWMOYf4ri8/w-d-xo.html

  • @赵赵宇哲
    @赵赵宇哲 ปีที่แล้ว

    This video is really clear!

  • @surajprasad8741
    @surajprasad8741 ปีที่แล้ว

    Thanks a lot Sir, clearly understood.