Applied topology 8: An introduction to persistent homology

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 พ.ย. 2024

ความคิดเห็น • 14

  • @katalinabiondi
    @katalinabiondi 3 ปีที่แล้ว +5

    I am new to this field and have read and watched a bunch on this...and this has been by far the BEST introduction to this topic. Bravo.

    • @aatrn1
      @aatrn1  3 ปีที่แล้ว

      Thanks so much - glad it was helpful!

  • @tonireyes844
    @tonireyes844 8 วันที่ผ่านมา +1

    What are the prerequisites for the math behind these concepts? Any good intro book to persistence homology we study here?

  • @amiltonwong
    @amiltonwong 3 ปีที่แล้ว +4

    Thanks Prof. Henry Adams for the great materials on TDA. I have a question. It's clear that the n-dim bar represents the lifetime of the corresponding n-dim hole. Could we say that the n-dim bar represents the topological feature of the corresponding n-dim hole?

    • @HenryAdamsMath
      @HenryAdamsMath 3 ปีที่แล้ว +2

      You're welcome! Yes, I think that's totally correct to say --- each n-dimensional persistent homology bar represents a topological feature which is an n-dimensional hole.

    • @amiltonwong
      @amiltonwong 3 ปีที่แล้ว +1

      @@HenryAdamsMath Thanks! Got it :)

  • @mohmadthakur4891
    @mohmadthakur4891 3 ปีที่แล้ว +4

    Thank you for the nice video.
    Can you please give an advice on how to learn more about topology/persistent homology if you have no background on topology. I am looking to apply persistent homology on an engineering problem. Most of the textbooks and papers on persistent homology do not provide enough background information.

    • @aatrn1
      @aatrn1  3 ปีที่แล้ว +4

      Hi Mohmad, you may be interested in some of the following surveys
      www.ams.org/journals/bull/2008-45-01/S0273-0979-07-01191-3/S0273-0979-07-01191-3.pdf
      www.ams.org/journals/bull/2009-46-02/S0273-0979-09-01249-X/S0273-0979-09-01249-X.pdf
      dsweb.siam.org/The-Magazine/Article/topological-data-analysis-1
      drive.google.com/file/d/0B3Www1z6Tm8xV3ozTmN5RE94bDg/view?resourcekey=0-tE7y-zXFtV3OWSGmjUebYA
      or books
      www.math.colostate.edu/~adams/advising/appliedTopologyBooks/
      or software tutorials associated to any of the following software packages
      www.math.colostate.edu/~adams/advising/appliedTopologySoftware/

    • @mohmadthakur4891
      @mohmadthakur4891 3 ปีที่แล้ว +2

      @@aatrn1 Thank you so much for your response. Looking forward to reading this material.

    • @HenryAdamsMath
      @HenryAdamsMath 3 ปีที่แล้ว +1

      @@mohmadthakur4891 You bet!

  • @milandoshi7640
    @milandoshi7640 3 ปีที่แล้ว +2

    where are the triangles in the barcodes ? why are they not shown ?. Thanks.

    • @HenryAdamsMath
      @HenryAdamsMath 3 ปีที่แล้ว +3

      Good question! In this example, the triangles definitely contribute to killing or filling-in 1-dimensional holes. Otherwise, if we only had the edges and vertices (but no triangles), we would have a whole lot more 1-dimensional holes!
      In this particular example, no 2-dimensional holes (say hollow spheres or hollow tori) form, and for this reason we have not plotted the 2-dimensional persistent homology, as it would be an empty barcode. But you're exactly right that triangles could have given birth to 2-dimensional homology!

  • @muskduh
    @muskduh ปีที่แล้ว +1

    thanks

    • @aatrn1
      @aatrn1  ปีที่แล้ว

      You are welcome!