Sweden Math Olympiad Geometry Problem | Find the Shaded Area in the Quarter Circle | 2 Methods

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ม.ค. 2025

ความคิดเห็น • 27

  • @lwels49
    @lwels49 ปีที่แล้ว +3

    Another neat method is to recognise the shaded figure is a cyclic quadrilateral. Then use sum of the products of opposite sides equals the product of the diagonals

  • @ABUBAKARYAHAYA1
    @ABUBAKARYAHAYA1 ปีที่แล้ว +1

    You are indeed a prof. Hope to see more videos.

  • @hichamitani6433
    @hichamitani6433 ปีที่แล้ว +1

    Super job
    You are very intelligent prof
    Hope to see mire Olympiad problems

  • @santiagoarosam430
    @santiagoarosam430 ปีที่แล้ว +2

    AD=√24²+7²)=25 → Según eje OB trazamos la figura simétrica de la propuesta → AA´=2r→ CD+DA´=7+25=32→ El triángulo ACA´es tipo 3/4/5→ AA´=8*5=40→ r=20→ El triángulo AOD es 3/4/5→ OD=5*3=15→ Área AODC =(20*15+24*7)/2 =234
    Gracias y saludos.

  • @rameshchandraray3696
    @rameshchandraray3696 ปีที่แล้ว

    20:50
    One easier method:
    AD is joined. Also OE is joined where E is the mod pt of AC.OE meets AD at F.
    Now, E is the mid pt of AC and O is the centre of the circle with chord AC. Therefore OE is perpendicular to AC like DC. Since E is the mid pt of AC, F is the mid pt of AD and EF is half CD.
    Also AODCis a cyclic quadrilateral because it's two opposite angles are right angles. Hence AD is a diameter of this circle. So F is its centre. So FA equals FO equals half AD.
    Obviously, AD equals 25, OF equals 12.5, FE equals half DC equals 3.5.
    So OE equals 16.
    Now the area of the quadrilateral AODC is the sum of the area of the trapezium OECD and that of the triangle AOF which can be calculated out to be 138 plus 96 i.e 234.

  • @spacer999
    @spacer999 ปีที่แล้ว +2

    In method 2, there is no need to find R. Area ADM is simply 25*24/2=300, and area of OAD is just half of that which is 150. Final area = 150+24*7/2 = 234.

    • @taufikyt2711
      @taufikyt2711 ปีที่แล้ว

      Nice dude

    • @rick57hart
      @rick57hart ปีที่แล้ว +1

      I don't get it. How do you calculate the area ADM?

    • @MarieAnne.
      @MarieAnne. ปีที่แล้ว

      @@rick57hart I'm not sure how @spacer999 arrived at that formula, but from diagram, we can tell that
      Area(ADM) = Area(ACM) - Area(ACD) = 1/2(24*32) - 1/2(24*7) = 1/2(24*25) = 300

    • @false9z746
      @false9z746 ปีที่แล้ว

      Just consider AC as a height and DM as a base of the triangle ADM you will get the area of this equal to 1/2*25*24=300

  • @n.662
    @n.662 ปีที่แล้ว

    This is beautiful! Thahk you!

  • @jinnyhot105
    @jinnyhot105 ปีที่แล้ว +1

    In method2
    Let Area of triangle OAD=S= Area of triangle ODM
    then Area of triangle ACM= 2S+84
    Area of triangle ACM=1/2×32×24=384
    therefore S=150
    Then ?=S+84=150+84=234.

  • @thichhochoi766
    @thichhochoi766 6 หลายเดือนก่อน

    How do you get 144 + 156 = 400?

  • @kamalnakkour5958
    @kamalnakkour5958 ปีที่แล้ว

    How did you get( x- 9)(x+16)

  • @ВерцинГеториг-ч5ь
    @ВерцинГеториг-ч5ь ปีที่แล้ว +1

    Проводится АД . Вокруг четырехугольника , у которого сумма противоположных углов = 180* можно описать окружность . АД является диаметром окружности ., с точки О проводится перпендикуляр на хорду АС , который и делит хорду АС пополам , отрезок перпендикуляра на хорду АС является срединой линией треугольника АСД и равен 1/2 ДС=7/2=3,5 . После вычислений по теореме Пифагора - АС=24 . СД=7 , ДО = 15 , АО= 20 . Площадь четырехугольника , вокруг которого можно описать окружность , вычисляется по формуле Брахмагупты S=\|(р-а)(р-в)(р-с)(р-d) , р - полупериметр = (24+7+15+20)/2=33 ,
    S=\|(33-24)(33-7)(33-15)(33-20) = \|9х26х18х13 = \|9х2х13х9х2х13=9х2х13=234 .

  • @mimoumohamed5140
    @mimoumohamed5140 ปีที่แล้ว +1

    but why not 240.25???

  • @hkgupta1954
    @hkgupta1954 ปีที่แล้ว

    Excellent

  • @quigonkenny
    @quigonkenny 8 หลายเดือนก่อน

    Draw AD.
    Triangle ∆DCA:
    DC² + CA² = AD²
    7² + 24² = AD²
    AD² = 49 + 576 = 625
    AD = √625 = 25
    Mirror arc AB, radius OA, and line segment AD about OB to create a semicircle with diameter AE. As ∠C = 90°, CD and the mirrored AD will form CE, so CE = CD+AD = 7+25 = 32.
    Triangle ∆ECA:
    CA² + EC² = AE²
    24² + 32² = AE²
    AE² = 576 + 1024 = 1600
    AE = √1600 = 40
    Triangle ∆DOE:
    OD² + OE² = DE²
    OD² + 20² = 25²
    OD² = 625 - 400 = 225
    OD = √225 = 15
    The orange area is the area of ∆ECA minus the area of ∆DOE.
    Orange kite(?) ODCA:
    A = BH/2 - bh/2
    A = 32(24)/2 - 20(15)/2
    A = 16(12) - 10(15)
    A = 384 - 150 = 234 sq units

  • @AfredLiu
    @AfredLiu ปีที่แล้ว

    2nd Method Can Be More Easy, Because ΔADM is A isosceles triangle. So ⊿AOD's Area Is Half Of ΔADM's Area. And ΔADM's Area Is ⊿ACM's Area Minus ΔACD's Area.So
    When We Use Pythagorean theorem Found AD's length And Made semicircle O And ⊿ACM, We Can calculated quadrilateral ACDO's Area Easily.

  • @houcineessbai3387
    @houcineessbai3387 7 หลายเดือนก่อน

    Just to write 256 in place of 156 for 16 square.

  • @miriamvianaesilva1118
    @miriamvianaesilva1118 11 หลายเดือนก่อน

    Entendido pela matemática; não pelo idioma.

  • @padraiggluck2980
    @padraiggluck2980 ปีที่แล้ว

    👍

  • @Bossudeboss898
    @Bossudeboss898 ปีที่แล้ว

    Like ❤🎉

  • @murdock5537
    @murdock5537 ปีที่แล้ว

    234

  • @yakupbuyankara5903
    @yakupbuyankara5903 ปีที่แล้ว

    234

  • @yakupbuyankara5903
    @yakupbuyankara5903 11 หลายเดือนก่อน

    234