Sidewall-Driven Cavity: Vier angetriebene Ränder, Re = 100, 100 x 100 Zellen.

แชร์
ฝัง
  • เผยแพร่เมื่อ 2 ม.ค. 2025

ความคิดเห็น • 4

  • @CFD-Bielefeld
    @CFD-Bielefeld  2 หลายเดือนก่อน

    Due to numerous requests, I will give a series of technical tips on calculating the vortex volume fraction in this comment section.

    • @CFD-Bielefeld
      @CFD-Bielefeld  2 หลายเดือนก่อน

      First things first:
      We start the time-dependent simulation at time t = 0 with an initial state, where the velocity field is equal to zero in
      the whole fluid domain. Even the velocity of the 4 sidewalls is equal to zero.
      Therefore, the Reynolds-Number Re and the kinetic energy are initially zero.

    • @CFD-Bielefeld
      @CFD-Bielefeld  2 หลายเดือนก่อน

      The Reynolds Number is defined as follows:
      Re = u*h*rho/eta.
      Therein u is the lid-velocity, h is the height of the cavity,
      rho is the density and eta is the dynamic viscosity of the fluid.
      Since the lid-velocity is a function of time, the Reynolds Number
      is a function of time too.
      All sidewalls have the same velocity magnitude.
      For t in [0,1], the lid velocity is acceleratated from u = 0 to u = 1.
      For t > 1, u is constantly equal to 1 and as a result Re is constantly
      equal to 100.

    • @CFD-Bielefeld
      @CFD-Bielefeld  หลายเดือนก่อน

      How to calculate the Volume Vortex Fraction:
      First, the velocity gradient L := nabla v, which is a rank 2 tensorfield,
      is calculated in each node of the grid.
      The cartesian coordinates of L are:
      L_ij := d_i v_j ( i = 1,2,3 ; j = 1,2,3 )
      where d_i is the partial derivative operator in the i-direction and v_j is the j-coordinate of the velocity vector.
      In the next step we decompose the tensor L into a symmetric part S and an antisymmetric part W:
      S := 1/2 ( L + L^T ) and W := 1/2 ( L + L^T )
      S_ij := 1/2 ( L_ij + L_ji ) and W_ij := 1/2 ( L_ij - L_ji )
      In the next step we calculate the quantity Q in each node as follows:
      Q := 1/2 ( ||W||^2 - ||S||^2 )
      where ||.|| is the Frobebniusnorm. To calculate ||S||^2, you simply have to square all elements of S and add them up.
      Proof that:
      ||W||^2 = 1/2 | curl v |^2
      Next, we normalize the scalar field Q:
      Qn := 1 if Q > 0
      Qn := 0 if Q 0 holds.