The Stability and Instability of Steady States

แชร์
ฝัง
  • เผยแพร่เมื่อ 31 ธ.ค. 2024

ความคิดเห็น • 30

  • @GirtonOramsay
    @GirtonOramsay 4 ปีที่แล้ว +6

    MIT just puts every other American uni to shame with the quality of these lectures...great source for relearning DEs

  • @mariasmoczynska8937
    @mariasmoczynska8937 ปีที่แล้ว +1

    He's so great!!!! That these videos are free for humanity amazes me, thank you MIT!

  • @pafnunciog.g.8638
    @pafnunciog.g.8638 6 ปีที่แล้ว +5

    The simplicity and grandiosity of this lecture is only comparable to the outstanding usefulness of the concepts on it delivered. I had been -foolishly- looking for extremely adorned and complicated mechanisms to calculate and predict stability points in a production process and voila, this tool makes all so much easier and meaningful! Thank-you, Professor Strang!

  • @cknot
    @cknot 8 ปีที่แล้ว +17

    Excellent practical demonstration with that book Professor Strang!
    Thank you for these videos, they're amazing.

  • @mianliao3144
    @mianliao3144 7 ปีที่แล้ว +9

    The best lecture I've found on the topic of differential equation!

  • @hathuytu
    @hathuytu 3 ปีที่แล้ว

    we can find solution of the function y' = y-y^3 to verify the stable/unstable points as well.

  • @hathuytu
    @hathuytu 3 ปีที่แล้ว

    wowow, the technique of evaluation gradients is wonderful.

  • @charlesAcmen
    @charlesAcmen 3 หลายเดือนก่อน

    omg,so Professor you teach stable theorem as well ?damnnnnnnnnnn,from differential equations to LInear algebra and now this ,omg,

  • @fatmaalwahaibi4032
    @fatmaalwahaibi4032 ปีที่แล้ว

    the best explanation ever thanks

  • @xueqiang-michaelpan9606
    @xueqiang-michaelpan9606 7 ปีที่แล้ว +1

    This lecture is great!

  • @JohnVKaravitis
    @JohnVKaravitis 6 ปีที่แล้ว +3

    14:17 Nobel Prize, here I come!

  • @georgesadler7830
    @georgesadler7830 3 ปีที่แล้ว

    These are great contributions to advanced mathematics by MIT longtime professor DR. Gilbert Strang.

  • @brendawilliams8062
    @brendawilliams8062 2 ปีที่แล้ว

    Thankyou. Professor.

  • @debajyotichoudhuri7896
    @debajyotichoudhuri7896 5 หลายเดือนก่อน

    You can try it...on somebody else's book... :D This is such a nice humour.

  • @TheBigFatVladimir
    @TheBigFatVladimir ปีที่แล้ว

    thank you!

  • @greatpopcorn
    @greatpopcorn 7 ปีที่แล้ว +4

    LOL 15:49
    No!

  • @asif7240
    @asif7240 2 ปีที่แล้ว

    Thanks

  • @ishakookie5231
    @ishakookie5231 2 ปีที่แล้ว

    But why do the function go either way?

  • @nathanmerrill2260
    @nathanmerrill2260 3 ปีที่แล้ว

    nice product placement @professor strang

  • @anupamdas1540
    @anupamdas1540 4 ปีที่แล้ว +1

    Sir, What happened if df/dy =0 ?

    • @GirtonOramsay
      @GirtonOramsay 4 ปีที่แล้ว +2

      You get a weird "semi-stable" region that offers no useful insight into the stability of that point

  • @bastienlacote5651
    @bastienlacote5651 2 ปีที่แล้ว

    15:51

  • @jonathansum9084
    @jonathansum9084 7 ปีที่แล้ว +2

    Hey guys, without understanding the separable equations, you are not going to understand these 3 examples. Watch the Khan Academy first or the part before this. I guess Gilbert Strang and Cleve Moler focus on teaching the concept for those people took this class before.

  • @IloveNateReuss
    @IloveNateReuss 6 ปีที่แล้ว

    where does the f come from

    • @Computer-STEM-NERD-903
      @Computer-STEM-NERD-903 6 ปีที่แล้ว

      Ayvan dy/dt = f(y). The examples are as follows: dy/dt = ay(1), dy/dt = y-y^2 (2), dy/dt = y(1-y^2). According to Professor Strang, the steady state of f(y) is equal to 0. Still don’t know what a steady state is, but that’s how he derives his functions in terms of y.

  • @jakemcroyan7041
    @jakemcroyan7041 3 ปีที่แล้ว

    Uh-huh-huh... Yupp

  • @alexanderseton
    @alexanderseton 5 ปีที่แล้ว

    I think the Professor mixed up the solutions at 4:00. It is 0,1,-1 for the second example and 0,1 for the third one. Very nice lecture. This shows why MIT is one of the best institutions worldwide