1 plus the product of four consecutive integers

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 ธ.ค. 2024

ความคิดเห็น • 46

  • @saba6601
    @saba6601 วันที่ผ่านมา +18

    Prime Newton, you are a brilliant Mathematician.Regards Dr Sabapathy (Mathematician, Singapore 🇸🇬)

  • @BartBuzz
    @BartBuzz 22 ชั่วโมงที่ผ่านมา +5

    Now that's pretty neat! The "difference of squares" is how I taught my granddaughter how to compute calculations like (60^2 - 59^2) in her head.

  • @ahmedrafea8542
    @ahmedrafea8542 17 ชั่วโมงที่ผ่านมา +2

    As always, you continue to amaze me with your talent, great choice of problems, and wonderful style of explaining things. Thanks very much and keep up the wonderful work.

  • @SidneiMV
    @SidneiMV วันที่ผ่านมา +18

    1 + (k² + 3k + 2)(k² + 3k)
    k² + 3k = u
    1 + u(u + 2) = u² + 2u + 1 = (u + 1)²
    (u + 1)² is a perfect square
    so (k² + 3k + 1)² is also a perfect square

    • @saba6601
      @saba6601 วันที่ผ่านมา +3

      @SidneiMV Very nice approach 👍 Regards Dr Sabapathy (Mathematician, Singapore 🇸🇬)

    • @knupug
      @knupug วันที่ผ่านมา +2

      Really liked you solution. Very elegant.

  • @bvenable78
    @bvenable78 20 ชั่วโมงที่ผ่านมา +2

    I love your grin at the end of each solution. Thanks for sharing your joy with us. 💙

  • @Akenfelds1
    @Akenfelds1 วันที่ผ่านมา +4

    I saw the problem, I tried to prove it. I came close but never made it. Then I watched the full video and sat there with my mouth wide open. Beautifually done!

  • @perpetgholl5742
    @perpetgholl5742 วันที่ผ่านมา +5

    very few smart channel on youtube.
    you're one of them.
    thanks for sharing.

  • @chrisbarrington108
    @chrisbarrington108 20 ชั่วโมงที่ผ่านมา +1

    Thank you. Nice presentation. You have a very reassuring way of teaching.… A more general version of the same problem is: Prove that the product of four positive integers in arithmetic progression with common difference d plus a constant (d^4) is a perfect square.

  • @aconite_claw
    @aconite_claw วันที่ผ่านมา +3

    Your lullabies like voice and mathematical acumen make maths story like. Quite appreciated. I like it a lot.

  • @NoirKnight-uy2ce
    @NoirKnight-uy2ce วันที่ผ่านมา +4

    Although I am not taking the class required for that, I enjoyed the lesson I learned from here. NEVER STOP LEARNING!

  • @anandarunakumar6819
    @anandarunakumar6819 13 ชั่วโมงที่ผ่านมา

    Nice problem. After seeing the symmetric form of polynomial, I was tempted to use Pascal's triangle to simplify. The expression k^4+6k^3+11k^2+6k+1 = k^4+4k^3+6k^2+4k+1 + 2(k)(k^2+2k+1)+ k^2 , which reduces to a perfect square: ((k+1)^2+k)^2.
    Thanks for this problem, discovered a nice relation of Pascal's triangle of alternate rows. Take 3 alternate rows of Pascal's triangle, the sum of coefficients of 1st and third row, and add twice the sum of middle row to get a perfect square!

  • @twlson49
    @twlson49 วันที่ผ่านมา +1

    Excellent explanation. Kudos to you.

  • @RoyPierce-fb8mt
    @RoyPierce-fb8mt วันที่ผ่านมา +1

    >>> from math import factorial as fc, sqrt as rt
    >>> 1 + fc(4)
    25
    >>> 1 + fc(8) / fc(4)
    1681.0
    >>> rt(1681)
    41.0
    >>>

  • @HomePersonal-yc9rx
    @HomePersonal-yc9rx วันที่ผ่านมา +3

    What an amazing smile and intro ❤🎉

  • @riccardofroz
    @riccardofroz วันที่ผ่านมา

    That was a pretty elegant solution. I got a more convoluted one as I expanded the whole thing:
    1+k(k+1)(k+2)(k+3)
    1+(k^2+k)(k^2+5k+6)
    1+k^4+5k^3+6k^2+k^3+5k^2+6k
    k^4+6k^3+11k^2+6k+1
    Extract a quartic binomial:
    (k^4+4k^3+6k^2+4k+1)+2k^3+5k^2+2k
    (k+1)^4+2k^3+5k^2+2k
    (k+1)^4+k(2k^2+5k+2)
    Extract a square binomial from the right term:
    (k+1)^4+2k(k^2+2k+1)+k^2
    (k+1)^4+2k(k+1)^2+k^2
    The previous is a square binomial with first term (k+1)^2 and second term k.
    ((k+1)^2+k)^2

    • @giuseppemalaguti435
      @giuseppemalaguti435 23 ชั่วโมงที่ผ่านมา +1

      Complimenti,ho avuto la stessa idea

  • @MrConverse
    @MrConverse 18 ชั่วโมงที่ผ่านมา +1

    0:49, maybe I’m being a little picky here but you can’t have a product of terms. Things that are added together are terms. Things that are multiplied together are factors. So we have a product of factors here. Hope it helps. Nice vid!

    • @PrimeNewtons
      @PrimeNewtons  18 ชั่วโมงที่ผ่านมา

      You're correct

  • @raymondseligman7003
    @raymondseligman7003 19 ชั่วโมงที่ผ่านมา

    I have asked a number of times and I don’t want to be a pain in the butt but do you teach, where did you get your incredible mathematical knowledge, and where did you go to school? Your videos are absolutely brilliant. Every time one pops up I think there’s no way I could do it or understand it but by the time you’re done I do understand it. My compliments.

  • @ernestdecsi5913
    @ernestdecsi5913 วันที่ผ่านมา

    Ez valóban egyszerű és nagyszerű!

  • @sauzerfenicedinanto
    @sauzerfenicedinanto วันที่ผ่านมา

    If n is a natural number then the product can be written as
    n(n+1)(n+2)(n+3)=[n(n+3)][(n+1)(n+2)]=[n^2+3n][n^2+3n+2]=[(n^2+3n+1)-1][(n^2+3n+1)+1]=
    (n^2+3n+1)^2-1
    if we add 1 the we obtain always a perfect square, precisely (n^2+3n+1)^2.

  • @fahadbinferoz6758
    @fahadbinferoz6758 วันที่ผ่านมา +2

    When are you going to upload the previous video correction video?

  • @ricardoguzman5014
    @ricardoguzman5014 วันที่ผ่านมา

    Elegant manipulation. My solution is as follows:
    show k(k+1)(k+2)(k+3)+1 is a square. let k+1=a and let k+2=b. Then it can be rewritten as such:
    (a-1)a x b(b+1) +1=
    ab(a-1)(b+1)+1=
    ab(ab+a-b-1)+1; now notice the parenthesis (ab+a-b-1); a is 1 less than b, so a-b in the parenthesis is -1, thus it becomes:
    ab(ab-1-1)+1=
    ab(ab-2) +1 =
    a²b² -2ab +1, which factors as (ab-1)²; thus k(k+1)(k+2)(k+3) +1 is a square.

  • @vaibhav_._.
    @vaibhav_._. วันที่ผ่านมา +3

    Hello sir ! Please make one more video on solving questions of JEE ADVANCE. . Pleasee 🌸

  • @xbz24
    @xbz24 17 ชั่วโมงที่ผ่านมา

    Where do I buy those chalkboard

  • @maths01n
    @maths01n 23 ชั่วโมงที่ผ่านมา

    Learnt ❤

  • @raghvendrasingh1289
    @raghvendrasingh1289 วันที่ผ่านมา +3


    Generalization -
    if p , q , r and s are in AP then
    pqrs+d^4 is always a perfect square where d is common difference
    proof -
    let p = a-3c , q = a-c , r = a+c , s = a+3c then d = 2c
    pqrs+d^4 = (a^-9c^2)(a^2-c^2)+16c^4
    = a^4- 10a^2c^2+25c^4
    = (a^-5c^2)^2

  • @robertpearce8394
    @robertpearce8394 วันที่ผ่านมา +1

    Neat

  • @mathunt1130
    @mathunt1130 22 ชั่วโมงที่ผ่านมา

    There might be a simplistic way. You know that the expression will be a quartic in k,and moreover a square of a quadratic, so write the quadratic as ak^2+bk+c. Now square and compare coefficients to find the quadratic. It's not as elegant as the solution provided.

  • @makehimobsessedwithyou6412
    @makehimobsessedwithyou6412 วันที่ผ่านมา

    you are so clever

  • @frreinov
    @frreinov 19 ชั่วโมงที่ผ่านมา

    Great. I tried it by myself but just couldn't come up with the way you went.

  • @MrGeorge1896
    @MrGeorge1896 23 ชั่วโมงที่ผ่านมา

    Perf.Sq. = 1 + k (k + 1) (k + 2) (k + 3)
    = k⁴ + 6k³ + 11k² + 6k + 1
    = k² [ ( k² + 1/k² ) + 6 ( k + 1/k ) + 11 ]
    = k² [ ( k + 1/k )² + 6 ( k + 1/k ) + 9 ]
    = k² [ ( k + 1/k ) + 3 ] ²
    = [ k² + 1 + 3k ] ²

  • @domanicmarcus2176
    @domanicmarcus2176 21 ชั่วโมงที่ผ่านมา

    As a first-year undergraduate, I am taking proof writing for my major (Pure Mathematics). Can you please make videos on all types of proof writing? Thank you

  • @StudyOnly-nn1xb
    @StudyOnly-nn1xb วันที่ผ่านมา

    K³-k(k+2)=k⁴+2k³-k²+2k
    (k²+k)²-2(k²+k)+1-1
    (K²+k+1)²-1
    +1
    (K²+k+1)²

  • @HrishikeshRaj-qv6lr
    @HrishikeshRaj-qv6lr 18 ชั่วโมงที่ผ่านมา

    Indians assemble here 🇮🇳❤

  • @0lympy
    @0lympy วันที่ผ่านมา

    Your square symbol isn't perfect :(

  • @Bertin-q3y
    @Bertin-q3y วันที่ผ่านมา

    -9

  • @Kakarot-kr
    @Kakarot-kr วันที่ผ่านมา +1

    Sir pls do this Let f(x)=lim n infty n^ n (x+n)(x+ n 2 )***(x+ n n ) n!(x ^ 2 + n ^ 2)(x ^ 2 + (n ^ 2)/4) ***(x^ 2 + n^ 2 n^ 2 ) ^ x n , for all x > 0 Then
    (A) f(1/2) >= f(1)
    (B) f(1/3) = (f' * (2))/(f(2))
    Jee advanced 2016 shift 2

  • @mircoceccarelli6689
    @mircoceccarelli6689 วันที่ผ่านมา

    👍
    1 + k(k+1)(k+2)(k+3) = (k^2 + 3k + 1 )^2
    = [ ( k + 1 )( k + 2 ) - 1 ]^2 = m^2
    k € Z , m € Z
    👍😁👋

  • @graf_paper
    @graf_paper 22 ชั่วโมงที่ผ่านมา

    1+ n(n+1)(n+2)(n+3)
    = (n + (n+1)²)²
    Very nice!!!

    • @robertveith6383
      @robertveith6383 21 ชั่วโมงที่ผ่านมา

      Show the connecting steps in between the first line and the last line.

    • @Meowcat-kr6tc
      @Meowcat-kr6tc 12 ชั่วโมงที่ผ่านมา

      @@robertveith6383 They're just noting the general idea the problem suggests

  • @marioenriquegarduno9676
    @marioenriquegarduno9676 17 ชั่วโมงที่ผ่านมา

    El Memín penguin de las matemáticas 👍