Lecture 05 - Scale-invariant Feature Transform (SIFT)

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ม.ค. 2025

ความคิดเห็น • 113

  • @alivaramesh7225
    @alivaramesh7225 8 ปีที่แล้ว +23

    One of the best lectures I have seen. Very clear explanation of all the technical steps.

  • @MrRoyzalis
    @MrRoyzalis 10 ปีที่แล้ว +32

    This professor has a talent for explaining things clearly and concisely.

  • @ruairc
    @ruairc 11 ปีที่แล้ว +57

    I think this guy is great. This is the first time I have bothered to write something about anything on the internet apart from facebook.

  • @maximeprieur7878
    @maximeprieur7878 5 ปีที่แล้ว +4

    As a French student, i understand most of the video and find it way clearer than the orignal paper from Lowe. I think it is due to to quality of the presentation, the fluency of the teacher. Moreover you can feel that the teacher knows what he is talking about! :) Great video!

  • @83vbond
    @83vbond 3 ปีที่แล้ว +2

    Thanks to Dr Shah and the uploader. I just did this in class at my university, but it wasn't half as clear as this one. Very helpful. Amazing that an 8 year old recorded lecture is more relevant than a current live one

  • @benjaminchen5749
    @benjaminchen5749 3 ปีที่แล้ว +2

    The part where he explained how the Laplacian of Gaussian works as a specific size of blob detector to achieve scale invariance at 18:19 was really helpful for me. My CV professor just skipped straight to difference of Gaussians and I didn't get why we used them or the benefit of it until now.

  • @morganma680
    @morganma680 5 ปีที่แล้ว

    A polished lecture given by a nice guy. Dr. Mubarak describe SIFT in a straightforward way.

  • @manikantabandla3923
    @manikantabandla3923 2 ปีที่แล้ว +1

    Does the scale refer to Sigma of Gaussian within an octave or downsampled image size?

  • @manikantabandla3923
    @manikantabandla3923 2 ปีที่แล้ว +1

    Where are we using DOG's calculated on downsampled image?

  • @talharehman4902
    @talharehman4902 7 ปีที่แล้ว

    BEST VIDEO ON SIFT! Explains the algorithm really well. Thank you so much.

  • @madhivarman508
    @madhivarman508 7 ปีที่แล้ว +1

    Even though i am new to CV he clearly made me to understand about SIFT.. Thanks! professor.. :)

  • @ShreyaGuptaella
    @ShreyaGuptaella 9 ปีที่แล้ว +4

    Thank you so much for these videos, very detailed and helpful :) please don't stop posting these lectures.

  • @afterbunny257
    @afterbunny257 6 ปีที่แล้ว +3

    36:00 Difference between edges and interest points in terms of Laplacian of Gaussian.

  • @kelvin.salton
    @kelvin.salton 7 ปีที่แล้ว

    The best SIFT explanation I ever found. Thanks

  • @kelvinpaul8983
    @kelvinpaul8983 7 ปีที่แล้ว

    This lecture really helped me acquire a better understanding of the SIFT algorithm. Thank you very much.

  • @samrockseagle
    @samrockseagle 11 ปีที่แล้ว

    after playing it almost 5 times over a month every thing is clear now.

  • @dbieber
    @dbieber 11 ปีที่แล้ว +1

    Thanks! I like how at 54:14 he says "and that's it. you can describe this in one slide".

  • @JohnTheHumbleMan
    @JohnTheHumbleMan 11 ปีที่แล้ว

    and, in the figure, two Probability Density Functions (pdf) are shown. the first bell-shape curve is the PDF for all correct cases. You can see that it's a normal distribution, or gaussian distribution. in most cases, the ratio (horizontal axis) has a value less then 0.8. The 2nd PDF is for the wrong cases, meaning we found a close but wrong match, it's a parabola, and most cases have a ratio larger than .08. so 0.8 is a good value to use.

  • @AhmadPTafti
    @AhmadPTafti 10 ปีที่แล้ว +3

    That is a great demonstration on the SIFT algorithm. Thanks much!

  • @legacies9041
    @legacies9041 4 ปีที่แล้ว

    This is the definition of greatness

  • @karthikavadivel1704
    @karthikavadivel1704 4 ปีที่แล้ว

    Very clear explanation! I was very interested in this topic because of the way it was delivered.

  • @quantummath
    @quantummath 12 ปีที่แล้ว +2

    53:50
    SIFT in a nutshell ..... why SIFT is 128 dimensions and how it's extracted from actual image.
    - Thanks for uploading the video :)

  • @JohnTheHumbleMan
    @JohnTheHumbleMan 11 ปีที่แล้ว

    this is for the purpose of robustness. for a descriptor in image 1, we may find more than one pretty close matches in image 2, the closeness of these matches are measured by their Euclidean distance from the descriptor in image 1. The smaller the distance the better. The ratio is the ratio between the best match and 2nd best match.

  • @malharjajoo7393
    @malharjajoo7393 8 ปีที่แล้ว +1

    28:55 , isnt sigma supposed to be = 1.6 in the start ( and not 0.707 )

  • @buianhvu4835
    @buianhvu4835 6 ปีที่แล้ว

    Thank you for your contribution, it's much easier for me than reading the paper myself.

  • @nik2221
    @nik2221 10 ปีที่แล้ว

    This lecture is so good. I loved the way of explaining it by Dr. Shah

  • @DefSciTech
    @DefSciTech 3 ปีที่แล้ว

    Clear and concise explanation. Smart way

  • @zeeshanhabib2492
    @zeeshanhabib2492 6 ปีที่แล้ว +1

    amazing, very clear explanation of each step involved. good job sir

  • @utkarsh-21st
    @utkarsh-21st 4 ปีที่แล้ว +1

    Amazing Lecture! A comprehensive explanation

  • @ojasvisancheti5264
    @ojasvisancheti5264 3 ปีที่แล้ว

    Can we get the presentation slides, the link provided is showing an error

  • @leohaipengli5832
    @leohaipengli5832 6 ปีที่แล้ว

    Thanks! That's very clear explanation of SIFT. Much better than my professor..

  • @allanchan339
    @allanchan339 4 ปีที่แล้ว

    I have to say, this point and explanation is much better than mine.

  • @judesu6647
    @judesu6647 5 ปีที่แล้ว

    It's really helpful for getting the gist of SIFT. Thank you so much!

  • @ozgunozdemir2640
    @ozgunozdemir2640 11 ปีที่แล้ว

    i dont understand one thing in 0:26.55. after half-sampling the image with the k^2*sigma scale, are we gonna apply gaussian with k^2*sigma scale on the image that we obtained from sampling? i would be glad if somebody explain that.

  • @ajtorres77ful
    @ajtorres77ful 12 ปีที่แล้ว

    By the way. Very good lecture, thanks a lot for publishing this. God bless you all.

  • @ahmadmoussa3771
    @ahmadmoussa3771 4 ปีที่แล้ว

    Extremely good and clear explanation, thank you for this video

  • @mhmtwu6834
    @mhmtwu6834 2 ปีที่แล้ว

    The professor looks like Mohammad Reza Pahlavi :))
    Excellent lecture btw

  • @senakawijayakoon
    @senakawijayakoon 8 ปีที่แล้ว +1

    At 26.30 time, What does it mean by every other rows and every other column in down sampling process?

    • @HansHardmeier
      @HansHardmeier 8 ปีที่แล้ว +2

      A way to downscale an image is by taking + skipping one row/col.
      Assuming your img is 4x4. You take Rows/Cols 1,3 while discarding Rows/Cols 2,4. You new img is 2x2 which is a downscaled version of the original.
      There are other methods thou. i.e. Taking the average of an 2x2 window into a pixel.

    • @senakawijayakoon
      @senakawijayakoon 8 ปีที่แล้ว

      +Hans Hardmeier thank you lot

  • @AndreiAprodu
    @AndreiAprodu 6 ปีที่แล้ว

    I've been looking for an explanation of how sigma values are computed to lead to those results for a while now. Thank you.

  • @jonathansamuellumentut2138
    @jonathansamuellumentut2138 9 ปีที่แล้ว +1

    Thanks a lot Dr. Mubarak Shah.

  • @donskanone
    @donskanone 7 ปีที่แล้ว

    Sry maybe its a stupid question. I wonder if all the computation in the videos, where they show how they track an object like a card, is done in "real time"?
    I mean its computationally expensive to compute the coeffs for e.g. an affine transformation, right?

  • @barisgecer
    @barisgecer 12 ปีที่แล้ว

    Can somebody explain the figure at 01:04:46 ? What is the ratio of distance from.... and what the figure says? why we choose 0.8 ?

  • @vishnusaini6448
    @vishnusaini6448 8 ปีที่แล้ว +2

    Thank you sir for giving this lecture. It helps me a lot.

  • @aswinin5156
    @aswinin5156 7 ปีที่แล้ว

    Very informative. Best explanation about SIFT

  • @Code-and-Chords-s2g
    @Code-and-Chords-s2g 7 ปีที่แล้ว

    by using sift algorithm can we identify color of image?

  • @greencoder1594
    @greencoder1594 4 ปีที่แล้ว

    [01:08:34] «You have to write good papers which can be cited» - Dr. Mubarak Shah

  • @seereen2004
    @seereen2004 11 ปีที่แล้ว

    is there any lecture for SURF ? ... similar to SIFT

  • @LLCD
    @LLCD 10 ปีที่แล้ว

    Excellent video! Thanks! Keep them coming please.

  • @sarathelayadath2565
    @sarathelayadath2565 7 ปีที่แล้ว +1

    Good explanation professor.

  • @akshayrao1484
    @akshayrao1484 4 ปีที่แล้ว

    can anyone explain zero crossings vs scale space graph.

  • @13nitish13
    @13nitish13 6 ปีที่แล้ว

    Thank you Sir for explaining it so clearly and in great detail.

  • @ajtorres77ful
    @ajtorres77ful 12 ปีที่แล้ว

    I think that when he tried to explain the Key Point matching at 57.50 he didn't see the words "minimum Euclidean Distance". That would have helped him a lot. It happens sometimes.

  • @SaiManojPrakhya
    @SaiManojPrakhya 10 ปีที่แล้ว

    I am just wondering why Harris keypoint detector +SIFT desciptor is popular approach ? SIFT keypoints are scale invariant wheras Harris Keypoints are not ...

    • @bhavyajain9560601333
      @bhavyajain9560601333 9 ปีที่แล้ว

      +Sai Manoj Prakhya because they combine the qualities of descriptor and detector

  • @Romba2020
    @Romba2020 10 ปีที่แล้ว

    lots of thanks, Great and simple explaination

  • @williamhoffrance3204
    @williamhoffrance3204 10 ปีที่แล้ว +6

    Hairless points? What is he saying?

    • @kaustavisi
      @kaustavisi 10 ปีที่แล้ว +7

      watch the previous lecture. He covered corner detection (Harris point) there

    • @fadyb4031
      @fadyb4031 4 ปีที่แล้ว +1

      yeh those points have to be well groomed you know

  • @sarfarazjee
    @sarfarazjee 11 ปีที่แล้ว

    0.8 means first and 2nd best matches are too much closer. actual match can be 2nd best but due to some noise we are getting it as 2nd best instead of 1st or in other words 1st best can be wrong so we are taking chance. Graph is experimental results that from 0.1 to 0.8 first best match is best there are some very small wrong matches. but after 0.8 the first best is not correct. It is taken according to experimental results not according to some specific theory.

  • @ptyantai
    @ptyantai 9 ปีที่แล้ว

    Very good lecture, helped me a lot. Thank you!

  • @arunm6247
    @arunm6247 9 ปีที่แล้ว

    Sir, very nice. Great lecture.

  • @shawnchen47
    @shawnchen47 8 ปีที่แล้ว +2

    very well explained

  • @mudussirayubmuhammad5590
    @mudussirayubmuhammad5590 12 ปีที่แล้ว

    very good lecture,thumbs up!

  • @98765432101364
    @98765432101364 7 ปีที่แล้ว

    Thank you sir, for your nice explanation and information.

  • @TimIsrRus
    @TimIsrRus 10 ปีที่แล้ว

    Thanks a lot! Very good and detailed explanation!

  • @TheBirdBrothers
    @TheBirdBrothers 9 ปีที่แล้ว

    great series!
    very grateful :)

  • @childhoodgames1712
    @childhoodgames1712 4 ปีที่แล้ว +1

    ALLL professors explain SIFT as a literature review, no one can explain it practically, we need David Lowe himself to explain his theory!

  • @shaantanukulkarni5668
    @shaantanukulkarni5668 3 ปีที่แล้ว

    very nice lecture!

  • @edohkakasomado2351
    @edohkakasomado2351 9 ปีที่แล้ว

    wonderful lecture ...Thanks a lot

  • @solmanrupesh1624
    @solmanrupesh1624 10 ปีที่แล้ว

    does anyone have the matlab code for SHIFT?

  • @nuriakedir9984
    @nuriakedir9984 7 ปีที่แล้ว

    clear explanation .....thanks

  • @hedic414
    @hedic414 4 ปีที่แล้ว

    Life-saver, thank you so much!

  • @frankdimeglio8216
    @frankdimeglio8216 3 ปีที่แล้ว

    Time is NECESSARILY possible/potential AND actual IN BALANCE, AS E=MC2 IS F=ma; AS ELECTROMAGNETISM/energy is gravity ON BALANCE.
    Great !!!!
    By Frank DiMeglio

  • @univuniveral9713
    @univuniveral9713 5 ปีที่แล้ว

    Great tell. Can anyone tell me how to find or create datasets for detecting sexually explicit images?

  • @dewinmoonl
    @dewinmoonl 9 ปีที่แล้ว

    great lecture thanks!!

  • @AmerRanneh
    @AmerRanneh 7 ปีที่แล้ว +1

    Demo Software: SIFT Keypoint Detector
    David Lowe
    www.cs.ubc.ca/~lowe/keypoints/

  • @ashwanabdulmunem7957
    @ashwanabdulmunem7957 11 ปีที่แล้ว

    Thank you. It is interesting video

  • @bhavyajain9560601333
    @bhavyajain9560601333 9 ปีที่แล้ว

    this is a UG course??

    • @malharjajoo7393
      @malharjajoo7393 8 ปีที่แล้ว

      Yes it is taught in 3rd year ,but in fact in some places taught in 2nd year ,

  • @asawmifanchun6605
    @asawmifanchun6605 10 ปีที่แล้ว

    thank you... :) this is awesome...

  • @bhaskar_iith
    @bhaskar_iith 9 ปีที่แล้ว

    well explained..

  • @tommyfan6911
    @tommyfan6911 3 ปีที่แล้ว

    Super clear, saved my ass.

  • @advikajha1364
    @advikajha1364 9 ปีที่แล้ว

    thanks a lot sir!

  • @DIYGUY999
    @DIYGUY999 6 ปีที่แล้ว

    ONE WORD
    AMAZING

  • @EmreOzanAlkan
    @EmreOzanAlkan 11 ปีที่แล้ว

    Thank you!

  • @autripat
    @autripat 12 ปีที่แล้ว

    Nice!

  • @csmaster888
    @csmaster888 10 ปีที่แล้ว

    thank so much

  • @aishwaryabimaljoy6642
    @aishwaryabimaljoy6642 5 ปีที่แล้ว

    Thankyou sir

  • @cpsctutor168
    @cpsctutor168 10 ปีที่แล้ว

    thanks a lot very clear

  • @vishaldtu5682
    @vishaldtu5682 9 ปีที่แล้ว +8

    nice though I didn't understand a bit !!

  • @dajmepusti9638
    @dajmepusti9638 11 ปีที่แล้ว +2

    Dr. Shah is more concerned about citations than SIFT. I wish he described SIFT as detailed as the importance of citations (in his universe). This way there are still unexplained things.

  • @muaazahmed7177
    @muaazahmed7177 2 ปีที่แล้ว +1

    Ok

  • @imamvali3574
    @imamvali3574 9 ปีที่แล้ว

    i am doing same project on my PG

    • @mtvvvv
      @mtvvvv 9 ปีที่แล้ว

      +Imam Vali hello
      I'm working the same algorithm but I have problem to classify the result
      can you help me
      thanks a lot

    • @senakawijayakoon
      @senakawijayakoon 8 ปีที่แล้ว

      Dear Imam Vali
      At 26.30 time, What does it mean by every other rows and every other column in down sampling process?

  • @muaazahmed7177
    @muaazahmed7177 2 ปีที่แล้ว +1

    Explain

  • @preetiyadav4252
    @preetiyadav4252 10 ปีที่แล้ว

    cool :)

  • @balveersingh3051
    @balveersingh3051 ปีที่แล้ว

    Thanks for the bonus lecture in the end on How Google Search Works?

  • @micmacha
    @micmacha 2 ปีที่แล้ว

    Damn it, Windows 7, get out of the way...

  • @paugasolina5048
    @paugasolina5048 11 ปีที่แล้ว

    sift sucks surf rules!!!!

  • @ivanyiu7432
    @ivanyiu7432 6 ปีที่แล้ว

    good explanation, thanks!

  • @mahirjain8898
    @mahirjain8898 ปีที่แล้ว

    thank you for this