A Nice Math Olympiad algebra exponential equation|

แชร์
ฝัง
  • เผยแพร่เมื่อ 31 ธ.ค. 2024

ความคิดเห็น • 8

  • @Lifeoftoday786
    @Lifeoftoday786 3 หลายเดือนก่อน

    Interesting question

  • @Entertainment-rn9vd
    @Entertainment-rn9vd 3 หลายเดือนก่อน

    Excellent method

  • @FrazAhmad-n9m
    @FrazAhmad-n9m 3 หลายเดือนก่อน

    Nice method and you also verify brilliant

  • @wes9627
    @wes9627 3 หลายเดือนก่อน +1

    Think outside the box: 27+64=91.

  • @r8rdarklord
    @r8rdarklord 3 หลายเดือนก่อน +1

    a = x^3/2 b= y^3/2 => (a-b)(a+b) = 13*7 => a=10, b=3 => x^3 = 100, y^3 = 9 => if cube root of unity are 1 w w^2 then x = 100^1/3, w100^1/3, (w^2)100^1/3 and y = 9^1/3, w9^1/3, (w^2)9^1/3.

  • @spaclec
    @spaclec 3 หลายเดือนก่อน +1

    By observation, X and Y cannot be fractional as the subtraction of cubes is not fractionsl! So the X and Y have to be whole numbers. Also either X or Y have to have cube more than 91! So the first number to satisfy this is 5 as cube 5 is 125! If X is 5 then cube of Y must be 125+/- 91 i.e. 34 or 216! Obviously 216 is cube of 6 and hence the answer is x=6 and y =5!

  • @noiha5721
    @noiha5721 3 หลายเดือนก่อน +1

    (x-y)(x²+xy+y²)=1*91 is not necessary equivalent to x-y=1 and x²+xy+y²=91. It is not rigorous.
    If you do that, then you have to prove that there are no more solutions. Besides, you see for yourself that I imitate you and have:
    (x-y)(x²+xy+y²)=91=7*13 => x-y=7,x²+xy+y²=13. This gives 2 solutions (x; y)=(3; -4), (4; -3).
    If x, y are integers, then of course it is enough to consider the system of equations:
    x-y=-91, -13, -7, -1, 1, 7, 13, 91
    x²+xy+y²=-1, -7, -13, -91, 91, 13, 7, 1
    In this task, x, y are real. If we use a nonequivalent transformation, then we have to prove that there are no more solutions.

    • @christianlopez1148
      @christianlopez1148 3 หลายเดือนก่อน +2

      i agree, there are infinite solutions for x and y