How do circles squeeze, anyway?

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 ม.ค. 2025

ความคิดเห็น • 138

  • @wcodelyoko
    @wcodelyoko หลายเดือนก่อน +338

    Oh, they were saying "P sub k" not "piece of cake"

    • @calmsouls4502
      @calmsouls4502 26 วันที่ผ่านมา +5

      He*

    • @maxriering
      @maxriering 26 วันที่ผ่านมา +1

      ​@@calmsouls4502 "they" is a gender neutral personal pronoun in the English language, as well as being 3rd person plural. this means it can be used to describe any person (without the need to discriminate between genders) as well as a group of people

    • @AyaanThe0ne
      @AyaanThe0ne 26 วันที่ผ่านมา +1

      Unnecessary correction:
      Both use of pronouns are valid​@@calmsouls4502

    • @JustAnotherCommenter
      @JustAnotherCommenter 25 วันที่ผ่านมา +17

      oh, they were saying "let C be a circle" not "let cba circle"

    • @jackthehacker05
      @jackthehacker05 25 วันที่ผ่านมา +13

      Oh, they were saying ‘c naught’ not ‘sea nut’

  • @InDstructR
    @InDstructR 18 วันที่ผ่านมา +20

    These were the kinds of videos I craved back when I was in middle and highschool, there just weren't enough good quality ones. I am certain you'll have a number of passionate young mathematicians learn a lot of important skills from these videos.

  • @thatoneginger
    @thatoneginger หลายเดือนก่อน +98

    This whole time I was trying to think of what the “ideal” case would be like if you started with an infinitely large “circle” that was parallel to your line, so Csub1 was congruent to C, maximizing all CsubN

    • @FLCoeur
      @FLCoeur หลายเดือนก่อน +3

      You can do an inversion transformation at the point of tangent to change it into two parallel lines. en.m.wikipedia.org/wiki/Inversion_transformation

    • @Naverb
      @Naverb 16 วันที่ผ่านมา

      The diameter formula still works as a limit (take D to infinity), yielding D_k = D_0 as expected.

  • @Veileihi
    @Veileihi 27 วันที่ผ่านมา +16

    What's cool is that you can choose any initial position for the C0 and the infinte sequence of circles will all still converge to the same point, this is a pretty neat intuition for a how an infinite sequence is determined more by how it converges rather than what it converges on. Each set of circles is following the same general rule, but they all converge to an indistinguishable state in the limit; so, intuitively, it makes sense that you cannot infer the intial circle only by knowing that limit (or by only looking at that indistinguishable state) . Seems pretty obvious in this context but it can be confusing for limits of 1^n for example.

  • @wibbuffey
    @wibbuffey หลายเดือนก่อน +20

    dude. great animation and sound design, great video in general

  • @gregboi183
    @gregboi183 หลายเดือนก่อน +37

    Did you deliberately start the video with "let C B A"?

  • @ihaetschool3361
    @ihaetschool3361 29 วันที่ผ่านมา +18

    this video is ceaselessly, boundlessly amazing

  • @iateseventeenfriesatonce
    @iateseventeenfriesatonce หลายเดือนก่อน +135

    0:00
    let CBA
    chess battle advanced

  • @gamerboy7224
    @gamerboy7224 25 วันที่ผ่านมา +9

    Very nice question. I had a little play around, i even summed the areas of the circles. lfhcvsqjyo (desmos code) if anyone wants to have a look
    for anyone too lazy, the total area is pi/24 * D * psi[3](sqrt(D/D_0)) where psi[3](x) is the 3rd derivative of the digamma function

  • @suhnih4076
    @suhnih4076 29 วันที่ผ่านมา +8

    Let cba circle

  • @furretwalky
    @furretwalky หลายเดือนก่อน +31

    0:00
    Let chess battle advanced circle...

  • @triplebog
    @triplebog 20 วันที่ผ่านมา +1

    the choice of defining all the distances in this equation by diameter and not radius was bonkers

    • @MagikMako
      @MagikMako 16 วันที่ผ่านมา +2

      maybe because the question is asking for an equation in terms of diameter

  • @eliyahzayin5469
    @eliyahzayin5469 11 วันที่ผ่านมา

    When trying to solve the initial problem, I found that the locus of the secondary circles follows the equation of a parabola (x^2/4) This means that you can have a secondary circle of any size. If you go backwards, you *can* continue the sequence past the size of the original circle, however, this requires that the circles alternate sides of the base circle, which isn't as pretty.

  • @mihailazar2487
    @mihailazar2487 29 วันที่ผ่านมา +2

    I am genuinely surprised you did not use circle inversion to solve this

  • @SlimThrull
    @SlimThrull หลายเดือนก่อน +9

    1:06 Wait 5 minutes.

  • @imnotkentiy
    @imnotkentiy 29 วันที่ผ่านมา +3

    actually the problem of drawing circles to the right of the C0 can be solved the same formula as the first problem, but with negative indexes

  • @chillyman1459
    @chillyman1459 29 วันที่ผ่านมา +1

    I did something similar to this with stacking them vertically between two adjacent equally sized circles on a line. It ended up being an elegant proof of the sum of the inverse of triangular numbers being 2

  • @cmusard3
    @cmusard3 10 วันที่ผ่านมา

    The largest circle you could make depends on if you are counting up or counting down. The largest circle circle that you could draw with the two points of tangency would be a congruent circle. Then the question becomes how can you count up so that the final result is a congruent circle where you can draw a line between the two diameters that is parallel with the bottom line. If the second circle has to be smaer it can be reconceptualized as a limit

  • @roy11gg
    @roy11gg หลายเดือนก่อน +5

    Bro is back! 🎉🎉🥳

  • @tunafllsh
    @tunafllsh 27 วันที่ผ่านมา +2

    So the outro question boils down to replacing +k with -k
    Dk = ( sqrt(D D0) / [ sqrt(D) - k sqrt(D0) ] )^2
    Now the impossibility of drawing Dk strictly speaking only happens when `sqrt(D) - k sqrt(D0) = 0`, in other words `D/D0 = k^2` is a perfect square.
    To construct these circles start with with D0 = D, you have two identical circles on line L touching each other. Now fit a smaller circle inbetween those two, you'll get D/D0 = 4. Keep going and these circles' diameters will always be a perfect square factor from D. The "impossible" circle would have to touch the two identical circles, thus it has to be a degenerate circle of infinite size, aka. a straight line parallel to L.
    If D/D0 is not a perfect square, the denominator `sqrt(D) - k sqrt(D0)` will get the closest to 0 on the positive side at `k = floor(sqrt(D/D0))`.
    Let's rewrite Dk = ( sqrt(D) / [sqrt(D/D0) - k] )^2 = D / [sqrt(D/D0) - floor(sqrt(D/D0))]^2
    Note that the denominator is just the fractional part of sqrt(D/D0) squared which is less than 1, so Dk > D. After that C{k+1} would have to touch L on the left side of C and all the following circles will form squeezing circles on the left side of C.

  • @AdelBazzineFredrikaBremergymna
    @AdelBazzineFredrikaBremergymna 29 วันที่ผ่านมา

    That was really a "piece of cake".

  • @blockshift758
    @blockshift758 หลายเดือนก่อน +5

    I was just watching the grid video after the full house one.

  • @m1ndsoul
    @m1ndsoul หลายเดือนก่อน

    considering D != D_0 (more generally, there exist no k such that D_k = D/4), max amount of circles we can construct:
    n = ceil(sqrt(D/D_0))
    We can quick check the trivial case D_0 > D, and see that only 1 circle can be constructed, before we can no longer make new circles, without overlapping old ones.

  • @lilpinto6099
    @lilpinto6099 16 วันที่ผ่านมา

    i think it will work until one circle is as big as the original circle. as long as the last circle is smaller than the main circle you can add another. it may require it to be very large though

  • @lolzhunter
    @lolzhunter 28 วันที่ผ่านมา +1

    ok now assuming the big circle radius is 1 for simplicity, what do the sum of the area of the circles converge to as the amount of circles approach infinity, i know it will be less than 1 but whats the value

    • @gamerboy7224
      @gamerboy7224 25 วันที่ผ่านมา +1

      Hi! the sum of the areas of all of the circles would be pi/24 * D * phi[3](sqrt(D/D_0)) where phi[3](x) is the 3rd derivative of the digamma function, D is the diameter of the Big circle, and D_0 is the diameter of the first circle in the chain. lfhcvsqjyo is the desmos code if you want to have a look around

    • @lolzhunter
      @lolzhunter 25 วันที่ผ่านมา +1

      @gamerboy7224 my goat

  • @morn1415
    @morn1415 22 วันที่ผ่านมา

    Star Size Comparison 😬

  • @Gammaduster
    @Gammaduster หลายเดือนก่อน +3

    Great quality

  • @mjp121
    @mjp121 29 วันที่ผ่านมา

    I have another challenge- find the value of D0 such that the circle C0+1 “squeezes” C with the same proportions as C/C0, allowing a fractal “anti-squeezing” series

  • @ChrisContin
    @ChrisContin 29 วันที่ผ่านมา

    Giving it a go, and I like your animation style. The circumference is irrational. If there is a rational L then you must be measuring the two inner axes of the circle, and the circles will fall inside so measuring the area is the sum of all the circles'. The line must be irrational to follow the described pattern, which means there is no pattern to the circles' diameters yet and they are under pressure. A pattern must be related to some external factor, and not yet disclosed.

    • @cagedgandalf3472
      @cagedgandalf3472 29 วันที่ผ่านมา +1

      Animation style is manim by 3b1b

  • @jeffreyweevers3919
    @jeffreyweevers3919 หลายเดือนก่อน +11

    Waiting for the, best full house in holdem🎉

    • @lollol-tt3fx
      @lollol-tt3fx หลายเดือนก่อน +1

      holdem balls

  • @gregevgeni1864
    @gregevgeni1864 หลายเดือนก่อน

    Interesting solution!
    Thanks for sharing.
    It would also be interesting to suggest a method of making these circles.

  • @sameersehgal.90
    @sameersehgal.90 หลายเดือนก่อน +1

    Another question: Equation of locus of centers of those small circles

    • @gamerboy7224
      @gamerboy7224 25 วันที่ผ่านมา

      x^2/2D, a parabola with the center of the big circle, D/2 as it's focus

  • @HeavenLeahSky
    @HeavenLeahSky 23 วันที่ผ่านมา

    As I see it from the thumbnail; I'd have to conclude it'd be in kinda a curved shape with a flat bottom so long as we are only looking at a flat mathematical plane.
    You should trust me. I'm a very good armchair scientist

    • @HeavenLeahSky
      @HeavenLeahSky 23 วันที่ผ่านมา

      Maybe it would depend on the makeup and density of the circle. But it definitely would depend on the shape you're trying to squeeze it into, would it not?

  • @Natrevir
    @Natrevir 12 วันที่ผ่านมา

    What does circle fit?

  • @Demki
    @Demki หลายเดือนก่อน +2

    This can be solved using Descartes' theorem (generalized to generalized circles) which states that the curvatures of 4 touching generalized circles in the plane satisfy
    (k_1+k_2+k_3+k_4)^2 = 2(k_1^2+k_2^2+k_3^2+k_4^2)
    In this case, we have (using radii instead of diameters):
    k_1 = 1/R
    k_2 = 1/R_0
    k_3 = 0 (this is the line)
    So we get
    (1/R + 1/R_0 + 0 + k_4)^2 = 2(1/R^2 + 1/R_0^2 + 0^2 + k_4^2)
    And after some computation
    k_4^2 - 2(1/R + 1/R_0)k_4 + (1/R - 1/R_0)^2 = 0
    So
    k_4 = 1/R + 1/R_0 ± √( (1/R + 1/R_0)^2 - (1/R - 1/R_0)^2 ) = 1/R + 1/R_0 ± 2√( 1/(R R_0) ) = (1/√R ± 1/√R_0)^2 = ((√R ± √R_0)/√(R R_0))^2
    We're getting two solutions here, but we want the smaller circle so we want k_4 to be bigger than k_1 and k_2, so lets take the positive solution
    k_4 = ((√R + √R_0)/√(R R_0))^2
    So R_1 = (√(R R_0)/(√R + √R_0))^2
    And if we want the previous circle, it would simply be R_{-1} = (√(R R_0)/(√R - √R_0))^2 (note that if R=R_0, then this is not well defined, instead if we look at curvatures we can see that we get that the previous "circle" is a line parallel to the original one)
    I learned this while working on a visualization of an Apollonian gasket ( basically do the above computation over an over and over and over and over and over, but not really since once you have 4 circles you can use some linear transformation to get the fifth, and in fact you can calculate the centers in essentially the same way! )

  • @EternalPending
    @EternalPending 10 วันที่ผ่านมา

    Could we derive the rule
    >0
    =0

    • @EternalPending
      @EternalPending 10 วันที่ผ่านมา

      By increasing circle size

  • @werner134897
    @werner134897 24 วันที่ผ่านมา

    I thought you were going to ask what is the total area of all infinitely many circles.

  • @tianyuema4797
    @tianyuema4797 หลายเดือนก่อน +1

    Great video! Also, where is the question from?

    • @YATAQi
      @YATAQi  หลายเดือนก่อน +1

      This one was pulled from the book "Parabolic Problems: 60 Years of Mathematical Puzzles in Parabola" by David Angell and Thomas Britz. There are so many great problems from Parabola!

  • @mementomori7160
    @mementomori7160 27 วันที่ผ่านมา

    Soooo, I solved it, but on radiuses(so had to half on start and double the result) and forgot that R = sqrt(R)^2 so I ended up with the ()^2 in the denominator and R above it, also took me a longer way because of bad ideas I got and mistakes
    It was fun

  • @danser_theplayer01
    @danser_theplayer01 หลายเดือนก่อน +1

    I have no freaking idea.
    Pie? I know circles are involved with pie, but what kind of pie? Do they prefer meat or apples?
    We'll never know.

  • @chessboy00
    @chessboy00 27 วันที่ผ่านมา

    kind of looks like a golden ratio relationship

  • @olhristov
    @olhristov หลายเดือนก่อน

    I want a piece of cake now.

  • @yaiirable
    @yaiirable 28 วันที่ผ่านมา

    How do we know that we can put infinite circles to the left? Eventually C will touch the line..

    • @gamerboy7224
      @gamerboy7224 25 วันที่ผ่านมา +1

      Because for any given circle C_k along the chain, you can easily prove that there exists a circle C_k+1. By induction this means theres infinite circles

    • @yaiirable
      @yaiirable 25 วันที่ผ่านมา

      @gamerboy7224 fair

  • @deleted-something
    @deleted-something 14 วันที่ผ่านมา

    pretty neat!

  • @rorucopexperements
    @rorucopexperements 27 วันที่ผ่านมา

    Plug in a negative value?

  • @sensorer
    @sensorer หลายเดือนก่อน

    This puzzle reminds me of a one in VIsual Complex Analysis by Tristan Needham. I wonder if inverting this problem with respect to the bigger circle makes it easier
    Edit: I think the problem becomes harder if you invert it in a circle :)

  • @Whynot690
    @Whynot690 หลายเดือนก่อน

    Was this a BMO1 question?

  • @amoghopprasad8286
    @amoghopprasad8286 หลายเดือนก่อน

    My friend gave this problem in class and we both solved it🗣️🗣️🗣️🗣️🗣️🗣️

  • @charged_kaon
    @charged_kaon หลายเดือนก่อน

    banger animation

  • @CasualGraph
    @CasualGraph หลายเดือนก่อน +4

    5:36 "How many circles will we be able to add before the next circle can no longer touch both the line L and the circle C?"
    So I haven't done the algebra but I'm pretty sure that never happens. To see this, invert about any circle whose center is the point of tangency between L and C. Then the image of L is L, the image of C is a line parallel to L, and the image of the C_n's is a sequence of mutually tangent circles sandwiched between the two parallels. Seen from this perspective, it's obvious that no matter which direction you squeeze the circles into, they'll both result in infinite chains.

    • @freshrockpapa-e7799
      @freshrockpapa-e7799 หลายเดือนก่อน +5

      It's obvious that it is impossible to fit circles indefinitely going the other way, just look at it for 5 seconds, it's impossible.

    • @drynshock1
      @drynshock1 หลายเดือนก่อน +1

      bruh, he literally show u an example in the video

    • @CasualGraph
      @CasualGraph หลายเดือนก่อน

      Neither of you read the construction I described, so here's the id of a desmos graph demonstrating it: djipnet4am (youtube won't let me comment the link for some reason). What you're both missing is that after the circles get big enough, they wrap around to the other side of the line.

    • @boderaner
      @boderaner หลายเดือนก่อน

      @@freshrockpapa-e7799 it's possible. As circle at 5:42 is possible too. We have not limitations for diameters of circles, have we?

    • @freshrockpapa-e7799
      @freshrockpapa-e7799 28 วันที่ผ่านมา

      @@boderaner No matter how big you make the diameter of the next it won't simultaneously touch the floor, the previous circle, and the C circle. Even if this isn't immediately obvious to you, consider the geometry of having the previous circle as big as the C circle. How can it simultaneously touch the floor, the previous circle and the C circle? It's just impossible. If you think it is possible, draw it in paper. At most you will be able to make one circle as big as C (probably not even that), but I guarantee more than that won't fit.

  • @stickinthemud23
    @stickinthemud23 22 วันที่ผ่านมา

    An infinite NUMBER! Sheesh.

  • @noahmundakkal8308
    @noahmundakkal8308 24 วันที่ผ่านมา

    Infinite u didn’t specify it could touch either more than once 5:53

  • @mojedsamad7184
    @mojedsamad7184 17 วันที่ผ่านมา

    Nice thanks

  • @junak777
    @junak777 หลายเดือนก่อน +2

    Sphere is a twist away of itself, but different size.
    Small sphere is a twist away from big sphere.

    • @themathhatter5290
      @themathhatter5290 หลายเดือนก่อน +3

      What

    • @junak777
      @junak777 หลายเดือนก่อน +1

      @themathhatter5290 I taught of sphere and shadow. Projection. Also changed comment to be clear. I hope.

    • @jurd-e3d
      @jurd-e3d 28 วันที่ผ่านมา +2

      What does 'twist' mean in this context?

    • @junak777
      @junak777 28 วันที่ผ่านมา +1

      @jurd-e3d + in a word. Not rotation x.
      + is axySyMMetry, death,potENtial, AChirality, r-nose-ance, scalar, twist, helice,propeller,dielectric, lon-digit-unal sound(closed system),aDDition (MIXing MM I CS, STr8 line really, because Archimedes screw is upDown, unlike str8 line Aries mushroom of rising empty Shu, eddy or vortex or spinor, 2 opposite swirls whirLings giving 2 atoms or 1 electron. Pi.
      Plus, plasma, syMMetry diMMing(saDDLe miDDle ) contains itself and its opposite.
      X is bobbin, chiral life, rotation, heat, transverse sound,magnetism,light illumination, phi.
      More on twist in tilings. Also quanta magazine on how two spheres are connected. Sphere is a sphere in any dimension.
      Mixing ...ST-andi-ng STationary STiLL time vibration..anda or ence is ellipse or cenote.
      EN or e9 is hole pore..evaPoration or voLaTile, eversion. Tion is ohi light 89.
      1+1=4 means 1 straight back and forth.
      Atom + atom = 4 atoms of voID or vcUUm.
      Light + light = darkness ShaDow.
      HeliCity= knots + links
      Euler eq connecting exponents and angle..
      Etc

    • @jackthehacker05
      @jackthehacker05 25 วันที่ผ่านมา

      @@junak777I’m still not sure what you’re trying to get at

  • @jlpsinde
    @jlpsinde 27 วันที่ผ่านมา

    GREAT

  • @JohnPaulBuce
    @JohnPaulBuce 29 วันที่ผ่านมา

    mandelbrot

  • @parkershaw8529
    @parkershaw8529 หลายเดือนก่อน

    Why even bother with D, why not just use R?

    • @mateuszodrzywoek8658
      @mateuszodrzywoek8658 หลายเดือนก่อน +1

      D means diameter, R is just radius and D = 2R. Probably why

  • @Wildspeck
    @Wildspeck หลายเดือนก่อน +5

    Chess battle advanced

  • @daniyar942
    @daniyar942 หลายเดือนก่อน +7

    chess battle advanced

  • @Toninmile
    @Toninmile หลายเดือนก่อน +1

    Woot

  • @klymentiizolotarov9248
    @klymentiizolotarov9248 21 วันที่ผ่านมา

    Descartes' theorem (:

  • @Eunakria
    @Eunakria หลายเดือนก่อน +1

    me who has not once thought about how circles squeeze, seeing this video: yeah how _do_ circles squeeze anyway?

  • @HassanNemer-g5t
    @HassanNemer-g5t 12 วันที่ผ่านมา

    2520

  • @falsifiedbrib1268
    @falsifiedbrib1268 หลายเดือนก่อน +4

    HOW ARE THERE SO MANY ICELY FANS HERE

    • @JustAnotherCommenter
      @JustAnotherCommenter 25 วันที่ผ่านมา +1

      yt algorithm deliberately and conveniently recommending this video to Icely fans maybe because it heard the same phrase from the start of the video

  • @darrenjames6309
    @darrenjames6309 หลายเดือนก่อน

    Common mistake, you can't fit an infinite amount of circles, aside from the possibility of plank length, you will still be adding circles when the universe dies, never reaching even 1%of infinity.

    • @gamerboy7224
      @gamerboy7224 25 วันที่ผ่านมา +1

      get lost dude, the planck length doesnt exist in mathematics dummy. Also nothing actually forbids things from being smaller than the planck length

  • @ArchDudeify
    @ArchDudeify 27 วันที่ผ่านมา

    Would this be fun in higher dimensions - maybe longer video
    Graphics and equations here are nice 😎🤌