Tips Tricks 15 - Understanding Binary Cross-Entropy loss

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 พ.ย. 2024

ความคิดเห็น • 62

  • @ankitvaghasiya3789
    @ankitvaghasiya3789 4 หลายเดือนก่อน

    great explanation with using "entropy" term, so easy to understand

  • @rohitdhakad-k5s
    @rohitdhakad-k5s ปีที่แล้ว

    I have watched only 4 minutes till now but within that time I understood that the video is going to be interesting. greak work 🔥

  • @ishanaphale6373
    @ishanaphale6373 3 ปีที่แล้ว +1

    Thank you! Going through your videos has been an immense help for me in securing an internship!

    • @DigitalSreeni
      @DigitalSreeni  3 ปีที่แล้ว +1

      Glad to know and happy to help. Good luck with your internship.

  • @adriandip8448
    @adriandip8448 2 ปีที่แล้ว +2

    Thanks Sreeni! Crystal-clear explanation that doesn't dumb things down -- or make them hard to understand for the sake of showing it's a hard problem.

  • @pbberlin
    @pbberlin 2 ปีที่แล้ว

    I have been watching episodes 73ff and 204ff - $2 to express my appreciation

    • @DigitalSreeni
      @DigitalSreeni  2 ปีที่แล้ว

      Thanks for your appreciation Peter. I hope you'll find other videos also to be useful / educational.

  • @wessauder7708
    @wessauder7708 2 ปีที่แล้ว

    Thank you for such a well presented example of the calculation! Really made the concept easier to understand.

  • @pablouribe1522
    @pablouribe1522 2 ปีที่แล้ว

    Great video. I needed a refresh in the concept and it was perfect!

  • @handsome_seagull
    @handsome_seagull ปีที่แล้ว

    Awesome explanation, you were my hero for today :D

  • @jeehunkang5648
    @jeehunkang5648 3 ปีที่แล้ว

    Amazing. video. Your explanations are so thorough and on to the point!

  • @noorabentaher1295
    @noorabentaher1295 2 ปีที่แล้ว

    You are doing a great job. Thank you very much for your efforts.

  • @harisjoseph117
    @harisjoseph117 2 ปีที่แล้ว

    Great explanation. Thank you for making it simple.

  • @kevian182
    @kevian182 ปีที่แล้ว

    Excellent tutorial! Thank you!

  • @AnasHawasli
    @AnasHawasli 4 หลายเดือนก่อน

    Thank you for this video really helpful

  • @ExV6120
    @ExV6120 3 ปีที่แล้ว

    Thank you! please make videos about GAN for medical image segmentation sir

  • @inteligenciamilgrau
    @inteligenciamilgrau 11 หลายเดือนก่อน

    Really good!!

    • @DigitalSreeni
      @DigitalSreeni  11 หลายเดือนก่อน

      Glad you think so!

  • @rameshwarsingh5859
    @rameshwarsingh5859 3 ปีที่แล้ว +1

    sreeni sir ,thanks ✨✨✨✨

  • @proatemp211
    @proatemp211 2 ปีที่แล้ว

    Thanks Dr from amazing stuff. By the way, I am interested in cell segmentation in NAFLD case, using mask-rcnn, please direct me to any of your already existing video on your channel. Respect from JP.

  • @sann6688
    @sann6688 2 ปีที่แล้ว

    That was really useful! Thanks a lot

  • @3DComputing
    @3DComputing 3 ปีที่แล้ว

    As always, why look at another channel to understand these things. Thanks for the plain English

  • @theoverseer1289
    @theoverseer1289 3 ปีที่แล้ว

    Thanks for the video! I've been following your channel for a while and it has been really helpful.
    I have a question about a binary cross-entropy problem i'm into: what means that the loss function decreases to 0.07 more less but accuracy doesn't increase over 0.4??
    It have something to do with the data??? Sorry, i'm just new in deep learning. Thanks in advance!

    • @nathalieroos1999
      @nathalieroos1999 3 ปีที่แล้ว

      Hi, it could be possible that accuracy is not the best metric for your problem :)

    • @theoverseer1289
      @theoverseer1289 3 ปีที่แล้ว

      @@nathalieroos1999 Thanks! And how is that? What can be those metrics?

    • @nathalieroos1999
      @nathalieroos1999 3 ปีที่แล้ว

      @@theoverseer1289 like for example in the problem I'm dealing with I have a big class imbalance, I only have a few pixels labelled 1 in a batch, so the accuracy might be high but that might be because it is very good in predicting the 0 label (from which they are a lot more), so I might use the mean IoU or true positives as a metric. If I were you I would just play around with some metrics and see if they improve when your loss function decreases 😊

  • @bruh334
    @bruh334 11 หลายเดือนก่อน

    Thank you soooo very much.

  • @MohamedAbomokh
    @MohamedAbomokh 3 ปีที่แล้ว

    Thank you, much needed video :)

  • @georgemiller6010
    @georgemiller6010 3 ปีที่แล้ว

    Hey, great stuff! Im working with some of your earlier code from U-Net from video 207. Im following along but using personnel imagery that is RGB instead of the Mitochondria grayscale. How do I set the channels to 3? And how when I select a random image, how do I display it as RGB, as opposed to cmap='gray'

  • @herhappykitchen
    @herhappykitchen 2 ปีที่แล้ว

    your videos are really

  • @gustavojuantorena
    @gustavojuantorena 3 ปีที่แล้ว

    Great video! Thank you

  • @siddharthct4799
    @siddharthct4799 3 ปีที่แล้ว

    Great video

  • @suryatej839
    @suryatej839 3 ปีที่แล้ว

    u r totally amazing!!

  • @stoilacindy9730
    @stoilacindy9730 ปีที่แล้ว

    what is ti in the equation

  • @shaelanderchauhan1963
    @shaelanderchauhan1963 2 ปีที่แล้ว

    Do we use it in Yolo object detection?

  • @ksgfl
    @ksgfl 2 ปีที่แล้ว

    감사합니다.

    • @DigitalSreeni
      @DigitalSreeni  2 ปีที่แล้ว

      Thank you very much for being generous.

  • @李白-i8m
    @李白-i8m 3 ปีที่แล้ว

    thank you!

  • @sandips700
    @sandips700 2 ปีที่แล้ว

    Thanks

  • @viveksthanam
    @viveksthanam 2 ปีที่แล้ว

    Thanks!

    • @DigitalSreeni
      @DigitalSreeni  2 ปีที่แล้ว

      Thank you very much Vivek. Please keep watching...

  • @manuelpopp1687
    @manuelpopp1687 3 ปีที่แล้ว

    Danke!

    • @DigitalSreeni
      @DigitalSreeni  3 ปีที่แล้ว +1

      Many thanks Manuel for being very generous. Please keep watching.

    • @manuelpopp1687
      @manuelpopp1687 3 ปีที่แล้ว +1

      Thank you for producing these educational videos!

  • @ncroc
    @ncroc 3 ปีที่แล้ว

    If y's are known and only p's are unknown then this is maximum likelihood.

  • @akashprabhakar6353
    @akashprabhakar6353 2 ปีที่แล้ว

    👌

  • @EB3103
    @EB3103 3 ปีที่แล้ว

    awesome!

  • @bahaya7123
    @bahaya7123 8 หลายเดือนก่อน

    bless u

  • @amiroacid
    @amiroacid 8 หลายเดือนก่อน

    Thanks!

    • @DigitalSreeni
      @DigitalSreeni  8 หลายเดือนก่อน +1

      Thank you very much.

  • @jurischaber6935
    @jurischaber6935 2 ปีที่แล้ว

    Danke!

    • @DigitalSreeni
      @DigitalSreeni  2 ปีที่แล้ว

      Thank you very much for your kind contribution. Danke Schön