the test you didn't learn in Calculus!

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 ธ.ค. 2024

ความคิดเห็น • 62

  • @achrafsaadali7459
    @achrafsaadali7459 ปีที่แล้ว +39

    the transfomation you made at first it's called in french as " la transformation d'Abel"

    • @PPolycephalum
      @PPolycephalum ปีที่แล้ว +7

      English textbook ruined!
      Must use french edition!
      "La transformation d'Abel"? What the hell is that!?

    • @achrafsaadali7459
      @achrafsaadali7459 ปีที่แล้ว

      @@PPolycephalum if you don't know what i am talking you could have just ask

    • @PPolycephalum
      @PPolycephalum ปีที่แล้ว +5

      ​@@achrafsaadali7459No, it was a joke. Just trying to make someone laugh :)
      (See "Homer Simpson le grill")

    • @stefanalecu9532
      @stefanalecu9532 ปีที่แล้ว +3

      You can also say Abel's transformation in English

    • @Nolord_
      @Nolord_ ปีที่แล้ว

      ​@@stefanalecu9532Abel transform

  • @Calcprof
    @Calcprof ปีที่แล้ว +36

    Summation by parts (analogue with integration by parts). This should be better known. Very useful in a lot of places.

  • @MrMiguelChaves
    @MrMiguelChaves ปีที่แล้ว +25

    There's and editing error, but it's a good thing for us to find where's the error in the first proof attempt :D

    • @guilhermebotelho1615
      @guilhermebotelho1615 ปีที่แล้ว +1

      Correct me if I'm wrong, but I think the mistake is writing sum( |a_nb_n| ) = lim |sum( a_n-a_{n+1} ) sum(b_k)|
      This is because the second term is actualy |sum(a_nb_n)| where the modulus is outside the summation, not inside!

  • @TomFarrell-p9z
    @TomFarrell-p9z ปีที่แล้ว +20

    Video editing error? Anyway, the second time Michael goes through the proof is crisper.

    • @Nolord_
      @Nolord_ ปีที่แล้ว +3

      The first proof is wrong

    • @vishithvas5626
      @vishithvas5626 ปีที่แล้ว

      ​@@Nolord_Why though??

    • @Nolord_
      @Nolord_ ปีที่แล้ว

      ​@@vishithvas5626Because sum of |a_n b_n| isn't bounded when a_n = 1/n and b_n = (-1)^n

    • @noeblassel
      @noeblassel ปีที่แล้ว +5

      @@vishithvas5626 the third equality on the right is nonsense: on the left you have a sum of the absolute values, and on the right the absolute value of a sum

    • @Alan-zf2tt
      @Alan-zf2tt ปีที่แล้ว

      Okay - I may be wrong and apologies if so but my take is: there was no editing error.. Michael was being good teacher and emphasizing difference by parts aiming for a(0) >= zero so he let it be performed in front of us more that once

  • @FractalMannequin
    @FractalMannequin ปีที่แล้ว +7

    The first proof is not correct because, for instance, by taking a_n = 1/log(n) we have a monotone decreasing sequence converging to 0, and by taking b_n = (-1)^n / n we get a bounded series (the "alternating signs harmonic series" is convergent), however the sum of the absolute values has general term |a_n b_n| = 1/(n log(n)), so it's divegent. Which means the claimed bound is not true, and it's not surprising at all: absolute convergence is a tad too much.
    It can be fixed by taking the norm of the difference (a_1 b_1 + ... + a_n b_n) - (a_1 b_1 + ... + a_m b_m), which turns out to be bounded by M(a_n - a_m), concluding that the sequence of the sums a_n b_n is Cauchy, hence convergent, since a_n is Cauchy.
    Also, the entire thing can be generalised to complex numbers or Banach spaces by assuming the series of |a_(n+1) - a_n| is convergent and a_n tends to zero.

  • @huyviethungnguyen7788
    @huyviethungnguyen7788 ปีที่แล้ว +10

    Can someone explain the equality at 5:16? I thought it was supposed to be the absolute value of the whole sum of anbn, not the sum of /anbn/.

    • @violintegral
      @violintegral ปีที่แล้ว +5

      He made a mistake there and for some reason he didn't edit it out

    • @shohamsen8986
      @shohamsen8986 ปีที่แล้ว

      ​@@violintegralyup u are right. He mentions testing absolute convergence, but he doesn't the equality for the absolute value. It is definitely troublesome

    • @HagenvonEitzen
      @HagenvonEitzen ปีที่แล้ว +3

      And indeed, sum a_n b_n does in general *not* converge absolutely. Just try a_n = 1/n and b_n = (-1)^n

  • @holyshit922
    @holyshit922 9 หลายเดือนก่อน

    16:11 I calculated this sum with generating functons and complex numbers
    Generating function for sine , G(t) = Im(1/(1-exp(i*x)*t))
    Generating function for partial sum S(t) = 1/(1-t)*G(t)

  • @Nolord_
    @Nolord_ ปีที่แล้ว +6

    7:19 Wtf? This is so wrong...
    edit : The second proof is correct though. He forgot to remove the first one.

  • @kokainum
    @kokainum ปีที่แล้ว +13

    I think using sin n as imaginary part of exp(i*n) and showing geometric series with q equal to exp(i) is bounded is way simpler.

    • @droid-droidsson
      @droid-droidsson 4 หลายเดือนก่อน

      |exp(i)|=1, therefore the geometric series cannot be shown to converge or diverge by that method.

    • @kokainum
      @kokainum 4 หลายเดือนก่อน

      ​@@droid-droidssonIt doesn't need to converge. It just needs to be bounded. And showing geometric series are bounded for |q|=1 is simple, you have formula for each partial sum.

    • @droid-droidsson
      @droid-droidsson 4 หลายเดือนก่อน

      @@kokainum it has to be uniformly bounded, there has to be one fixed circle around the origin that none of the partial sums ever leave. That is not the case for q=1, so your argument cannot work for any q such that |q|=1.

    • @kokainum
      @kokainum 4 หลายเดือนก่อน

      @@droid-droidsson For q=1 it's not the case but for every other q such that |q|=1 it very much is the case.

  • @rainerzufall42
    @rainerzufall42 ปีที่แล้ว +8

    I've got a dejà vu experience mid video...

  • @janvesely3279
    @janvesely3279 6 หลายเดือนก่อน

    They did learn me this test during my Calculus courses. And, as an extra, I had to figure diverging sequences when one of those conditions was not fulfilled. That time, it was quite tricky.

  • @olivierbegassat851
    @olivierbegassat851 ปีที่แล้ว

    Beautiful. Wasn't aware of that, thanks 🙂

  • @swenji9113
    @swenji9113 ปีที่แล้ว +1

    The third condition means than the series of (b_n) is bounded. I think it's easier to state and understand this way personally

  • @davidgillies620
    @davidgillies620 ปีที่แล้ว

    Funnily enough, we _did_ learn about this in calculus, but that was the maths portion of a physics degree, where applications of this convergence test are quite common,

  • @CM63_France
    @CM63_France ปีที่แล้ว +1

    Hi,
    Thank you very much, I think you answered a question I asked a few videos ago.
    9:46 : good place to start.

  • @goodplacetostop2973
    @goodplacetostop2973 ปีที่แล้ว +5

    20:43

  • @egoreremeev9969
    @egoreremeev9969 ปีที่แล้ว +3

    We did learn that in Calculus.

  • @logo2462
    @logo2462 ปีที่แล้ว +2

    Seems like there was a video editing issue with this one?

    • @CM63_France
      @CM63_France ปีที่แล้ว +1

      Seems like he has no editor any more, and he hardly has the time to do this job properly himself.

  • @__hannibaal__
    @__hannibaal__ ปีที่แล้ว

    There are very good book : T. J. BROMWICH , introduction to infinite series. 1908.
    😊

  • @maxpodzorski3388
    @maxpodzorski3388 ปีที่แล้ว +1

    we did learn that cryterium on calculus but im a phisics major so maybe thats why (i havent used yet)

  • @readjordan2257
    @readjordan2257 ปีที่แล้ว

    I remember that in calculus

  • @watsonjunior85
    @watsonjunior85 ปีที่แล้ว +1

    I did learn it. It was in Calculus 3

  • @someheree6362
    @someheree6362 ปีที่แล้ว

    This is covered in calculus 3 and I used it in calculus 2

    • @mathisnotforthefaintofheart
      @mathisnotforthefaintofheart ปีที่แล้ว

      Not in Calc 3 in the US. Series are done in Calc 2 but this test is done in a real analysis course.

  • @mokhtarmougai5088
    @mokhtarmougai5088 ปีที่แล้ว +1

    Good new photo profile 🗿👍

  • @logo2462
    @logo2462 ปีที่แล้ว

    The second proof is much more comprehensible

  • @r.maelstrom4810
    @r.maelstrom4810 ปีที่แล้ว

    The title of the video where you proved summation by parts formula is "The sum of n/2^n two more ways!"

  • @damyankorena
    @damyankorena ปีที่แล้ว +2

    Oh my god new profile picture 😮😮

    • @CM63_France
      @CM63_France ปีที่แล้ว

      Yes , very nice, I like it too.

  • @mishashevelin6868
    @mishashevelin6868 ปีที่แล้ว +1

    We did in Russia)

  • @michelebricchi868
    @michelebricchi868 ปีที่แล้ว +1

    There is something odd here. It seems he shows absolute convergence which is a nonsense .

  • @PhilippeLacoude
    @PhilippeLacoude ปีที่แล้ว

    We have two nearly identical first thirds, don't we?

    • @eriksteffahn6172
      @eriksteffahn6172 ปีที่แล้ว

      The first proof is wrong, he probably forgot to edit it out.

  • @jesusalej1
    @jesusalej1 ปีที่แล้ว

    A simple question. Why dont u pronounce dirichlet as u pronounce chloe or echo. Fourier is not four year. Etc... Just saying maikel.

    • @forcelifeforce
      @forcelifeforce ปีที่แล้ว

      You can spell out "you."

    • @jesusalej1
      @jesusalej1 ปีที่แล้ว

      @@forcelifeforce why owe you?

  • @kokainum
    @kokainum ปีที่แล้ว

    First