ความคิดเห็น •

  • @blackpenredpen
    @blackpenredpen 3 ปีที่แล้ว +85

    Lambert W function explained: th-cam.com/video/Qb7JITsbyKs/w-d-xo.html

    • @gauravlapashya4505
      @gauravlapashya4505 3 ปีที่แล้ว +1

      Which would dominate if it was x^1/n where n goes to infinity?

    • @lalitmarwaha5861
      @lalitmarwaha5861 3 ปีที่แล้ว

      Can you please solve this question
      I'm not asking for a video
      Just solution
      If its possible, anybody please help i can't find it on internet
      2014^x + 5^x = 2008^x + 11^x solve for real values of x
      By hit and trial i know 0 and 1 are the solution but i want to know if there's a method to properly solve it

    • @uiopqwerty7104
      @uiopqwerty7104 3 ปีที่แล้ว +1

      Where are you from?

    • @igorkarlic2297
      @igorkarlic2297 3 ปีที่แล้ว

      In reality you haven't solved the equation but you have rearranged it and called the solution "Lambert function". It is called circular reasoning. In reality your solution is no different to the solution x=(lnx)exp3 put in Walpha nad find the solution. This problems should be called rearange equations with the help of the Lambert function.

    • @MikehMike01
      @MikehMike01 3 ปีที่แล้ว +3

      @@igorkarlic2297 you can calculate W(n) by hand if you really wanted to

  • @gardenmenuuu
    @gardenmenuuu 3 ปีที่แล้ว +669

    Root of a tree vs log of a tree

    • @Apollorion
      @Apollorion 3 ปีที่แล้ว +66

      Wood is wood, a valuable material, in particular with the beavers.

    • @loneranger4282
      @loneranger4282 3 ปีที่แล้ว +19

      Root will win eventually

    • @Shreyas_Jaiswal
      @Shreyas_Jaiswal 3 ปีที่แล้ว +9

      Got the joke.

    • @benhetland576
      @benhetland576 3 ปีที่แล้ว +48

      @@Apollorion Yes, that's why you use the Lambert Wood(x) function.

    • @stephenbeck7222
      @stephenbeck7222 3 ปีที่แล้ว +22

      Which is bigger, root(tree(3)) or log(tree(3)), where the index of the root and the base of the log are both G64?

  • @johnchessant3012
    @johnchessant3012 3 ปีที่แล้ว +192

    In this case, L'Hopital is just a fancy name for "the function which eventually increases faster will eventually win".

    • @pravargupta6285
      @pravargupta6285 3 ปีที่แล้ว +3

      Very valuable comment!

    • @duckymomo7935
      @duckymomo7935 3 ปีที่แล้ว +1

      Not all limits will go to zero

    • @BenedictMHolland
      @BenedictMHolland 3 ปีที่แล้ว +2

      Right. Just take the derivative until you get a linear term or a constant. Whichever is larger will always win.

  • @tycoon3228
    @tycoon3228 3 ปีที่แล้ว +31

    Bro ..i am following you since 3-4 years.. whenever i see your old videos., It makes me emotional as it reminds me of my childhood... things have changed in these years...most specifically what i remember is
    BLACK PEN RED PEN YAY

  • @blockthrower3947
    @blockthrower3947 3 ปีที่แล้ว +228

    I actually thought about using the inverse functions of nthroot(x) compared to ln(x) and seeing that e^x is going to be bigger than any x^n eventually and this leading to the inverse being smaller than any nthroot(x).

    • @einstien311
      @einstien311 3 ปีที่แล้ว +5

      Same

    • @anonymousfry
      @anonymousfry 3 ปีที่แล้ว +3

      Wow thanks never thought of it in this way. What I did was take the derivative of both and realised x^any postive interger always has larger slope than log for huge numbers, which is kinda similar to the video. But your method is way better since we cant say anything by just the first derivative, higher derivatives matter too

    • @jlaurenpiano
      @jlaurenpiano 3 ปีที่แล้ว

      Yea that's what I was thinking!

    • @adammckay7335
      @adammckay7335 3 ปีที่แล้ว +1

      What about infinith root?... Does that tend to Ln X?

    • @jlaurenpiano
      @jlaurenpiano 3 ปีที่แล้ว +4

      @@adammckay7335 putting aside the fact that you can't raise something to an infinity power... It is still the case that x to ANY POWER is going to be smaller than e^x over time, so even though ln(x) may look to be above for millions and millions down the number line, the root graph will eventually win

  • @ianloree2784
    @ianloree2784 3 ปีที่แล้ว +168

    Only for blackpenredpen would I stay up at 3 AM to watch a new video!

    • @blackpenredpen
      @blackpenredpen 3 ปีที่แล้ว +32

      Appreciate that!

    • @Shreyas_Jaiswal
      @Shreyas_Jaiswal 3 ปีที่แล้ว +3

      It's actually 4:16PM here, afternoon, in India

    • @machiavelli9121
      @machiavelli9121 3 ปีที่แล้ว

      3:54 in Germany 😅

    • @r.osette453
      @r.osette453 3 ปีที่แล้ว

      Now here is 03:21...between midnight and dawn..

    • @user-br2gm4ql3h
      @user-br2gm4ql3h 3 ปีที่แล้ว

      It's now 3 AM in my country

  • @matheusreidopedaco
    @matheusreidopedaco 7 หลายเดือนก่อน +2

    The fact I'm starting to solve these by myself after watching you for so many years... Thanks, dude. You're the GOAT.

  • @agabe_8989
    @agabe_8989 3 ปีที่แล้ว +21

    Why is no one talking about how amazing Brilliant is? I've seen hundreds of videos which Brilliant have sponsored and I've never seen any comment about Brilliant. Underrated.

  • @mcig98
    @mcig98 3 ปีที่แล้ว +35

    6:26 that ".....thank you so much" reminds me of Dr. Peyam's "thanks for watching" for some reason xD

    • @blackpenredpen
      @blackpenredpen 3 ปีที่แล้ว +5

      thanks for commenting! : )

  • @AgentM124
    @AgentM124 3 ปีที่แล้ว +46

    In algorithm design they want your algorithm to be O(ln(n)), but your solution is O(n^(1/12)), technically it isn't O(ln(n)) but in more common small cases, it's actually better :) 4:30

    • @pbj4184
      @pbj4184 3 ปีที่แล้ว

      You'll basically never reach that point so no worries 😃

    • @dlevi67
      @dlevi67 3 ปีที่แล้ว +5

      @@pbj4184 It very much depends on the problem. The critical value for 12th root is somewhere of the order of 10^20, which is pretty small for some applications. Prime factor decomposition or primality tests, anyone?

    • @MrRyanroberson1
      @MrRyanroberson1 3 ปีที่แล้ว +5

      @@dlevi67 i'd love to see an algorithm that's actually O n^(1/12) though XD but yeah it's not really that common to find values over 100 quintillion

  • @gavinf.9778
    @gavinf.9778 3 ปีที่แล้ว +15

    x^1/e and ln(x) do a really weird thing at x=e^e they touch at that point but x^1/e is always greater otherwise

  • @holyshit922
    @holyshit922 3 ปีที่แล้ว +12

    It can be useful when we want to compare complexity of algorithms

  • @nathanobiekwe6836
    @nathanobiekwe6836 3 ปีที่แล้ว +23

    My initial thought was to create a new function that represents the difference between the two functions, find the derivative of this difference function you will notice regions where the difference is increasing or decreasing.

    • @DarkMage2k
      @DarkMage2k 3 ปีที่แล้ว +1

      Nice! But do you mean integration of the difference function?

    • @nathanobiekwe6836
      @nathanobiekwe6836 3 ปีที่แล้ว +3

      @@DarkMage2k i was talkking about just analysing the derivative function of this difference function, if the derivative is negative then you know the two functions are moving away from each other, the converse is true.

    • @DarkMage2k
      @DarkMage2k 3 ปีที่แล้ว +2

      @@nathanobiekwe6836 oh I misunderstood that area thing. I thought like area under the curve

    • @samueljehanno
      @samueljehanno 11 หลายเดือนก่อน

      Integral nice

  • @canalMatUem
    @canalMatUem 3 ปีที่แล้ว +1

    Obrigado pela explicação da função W, não a conhecia. Ótimo vídeo.

  • @stefanvet8135
    @stefanvet8135 3 ปีที่แล้ว

    Great explanation!

  • @mit4539
    @mit4539 3 ปีที่แล้ว

    Thank you for these videos

  • @1224chrisng
    @1224chrisng 3 ปีที่แล้ว +12

    恭喜發財! Happy Lunar New Years!

  • @user-xs8dd7ns7p
    @user-xs8dd7ns7p 3 ปีที่แล้ว +1

    thanks to blackpenredpen I learned about the W-function and solved this equation in less than 40 seconds

    • @blackpenredpen
      @blackpenredpen 2 ปีที่แล้ว

      You're welcome and I am glad to hear! : )

  • @tele_math
    @tele_math 3 ปีที่แล้ว

    informative video good job

  • @purethanwarat3756
    @purethanwarat3756 3 ปีที่แล้ว

    Thank you!

  • @shreyasparameshwaran5421
    @shreyasparameshwaran5421 3 ปีที่แล้ว

    Where can I get the integrals for you and derivatives for you table next to him?

  • @GoodSmile3
    @GoodSmile3 3 ปีที่แล้ว

    1:20 that wow is hilarious. Great video with plot twists!

  • @orenfivel6247
    @orenfivel6247 3 ปีที่แล้ว

    @
    blackpenredpen
    Can u make a video about the other LambertW functions of different indices,
    lambertW(k,z), k is integer, z is complex number?

  • @BiscuitZombies
    @BiscuitZombies 3 ปีที่แล้ว +6

    Am I high, or can't you just say that e^cbrt(x) will eventually outpace e^(ln(X)) = x thus at some point cbrt(x) must be greater than ln(x) ?

  • @antoine2571
    @antoine2571 2 ปีที่แล้ว

    Loved it

  • @gavinriley5232
    @gavinriley5232 3 ปีที่แล้ว +3

    My mans growing a confucian beard my dude, nice.

  • @richsauce5558
    @richsauce5558 3 ปีที่แล้ว

    well done Mr

  • @DanBurgaud
    @DanBurgaud ปีที่แล้ว

    After scrolling for a very long time...
    4:46 "SO SATISFYING!!"
    LOL!

  • @gregoryeugene5959
    @gregoryeugene5959 3 ปีที่แล้ว +1

    I love this guy's teaching.

  • @edgardojaviercanu4740
    @edgardojaviercanu4740 3 ปีที่แล้ว +1

    Lovely!

  • @nisargbhavsar25
    @nisargbhavsar25 3 ปีที่แล้ว +1

    There can't be a bprp video without Lambert's W(Product Log) Function. He is trying hard to make this a part of the course!!

  • @theimmux3034
    @theimmux3034 3 ปีที่แล้ว +4

    Thank you for showcasing the secondary branch. Maybe make another video revolving around the branches of the Lambert W function? Feels like you just kinda threw it out there, yeah just put a minus in here and you'll be good.

  • @txikitofandango
    @txikitofandango 3 ปีที่แล้ว +16

    My thinking is, e^x is always bigger than any polynomial when x is sufficiently large, because the Taylor series of e^x is of a higher degree than any polynomial and its coefficients are all positive. Therefore, the inverse of e^x (i.e., ln(x)) will always be less than the inverse of a polynomial (such as a square or cube root of x) when x is sufficiently large.

    • @axbs4863
      @axbs4863 ปีที่แล้ว +1

      smart

    • @de_oScar
      @de_oScar ปีที่แล้ว

      that's so overkill, I love it

  • @jibiteshsaha4392
    @jibiteshsaha4392 3 ปีที่แล้ว +29

    If this has Lambert W I am leaving 😂😂

  • @yannickmwembe5147
    @yannickmwembe5147 3 ปีที่แล้ว

    Thanks 🙏🏾

  • @shivaudaiyar2556
    @shivaudaiyar2556 3 ปีที่แล้ว

    Blackpenredpen Will you please make a vedio on reimann zeta function

  • @gloystar
    @gloystar 3 ปีที่แล้ว

    Is it also possible to use Newton-Raphson method to approximate points of intersection?

  • @candidguy409
    @candidguy409 2 ปีที่แล้ว

    Which software do you use for those graphs?

  • @yapyeeqiang9217
    @yapyeeqiang9217 3 ปีที่แล้ว +2

    Love your video! (from Malaysia)
    I just wanna seek your advice, I always love to explore different topics of maths and I wanna know where can I start if I'm interested to learn about Pure Maths, which websites/videos or books I can refer to?

    • @nahrafe
      @nahrafe 3 ปีที่แล้ว

      I'm no bprp but this might help: th-cam.com/video/fo-alw2q-BU/w-d-xo.html

  • @user-ir8nd6mj2b
    @user-ir8nd6mj2b 3 ปีที่แล้ว

    How to approximate sinx with prod(x - npi)(x + npi)?

  • @terencetsang9518
    @terencetsang9518 3 ปีที่แล้ว +7

    7:06 “There’s always a bigger fish”

  • @ieatgarbage8771
    @ieatgarbage8771 2 ปีที่แล้ว +1

    I think of them as inverses of e^x and x^3. If you take the natural log of each, you’re left with x and 3lnx. Taking the derivative of each, you get 1 and 3/x. The derivative of the second continuously decreases, so it will eventually lose its lead.

  • @antman7673
    @antman7673 3 ปีที่แล้ว +2

    Exponential always beats polynomial in growth.
    So the inverse function of the exponential, which essentially transforms back the exponential to x, must be smaller to cancel out the bigger exponential function for large x.

  • @WelshPortato
    @WelshPortato 3 ปีที่แล้ว +10

    love the beard man hope youre doing well x

    • @blackpenredpen
      @blackpenredpen 3 ปีที่แล้ว +2

      I am. Thanks. Hope the same for u too!

  • @RudolfKlusal
    @RudolfKlusal 3 ปีที่แล้ว

    Does it mean, if I didn't use 3rt or 2nd root of x, but some parameter, e.g. "s," so if aftel l'hopital I find such "s" that that ratio would be 1, I found an "s-th" root of x which is the smallest one from which those two functions always cross out each other? :-)

  • @xnonsuchx
    @xnonsuchx 3 ปีที่แล้ว

    It's been too long since I mathed. ;-) I forgot about "ln" = natural logarithm, so at first thought l and n were variables from the video thumbnail. Then seeing "cbrt(x)=ln(x)" in the actual title made more sense...but I still needed to listen to the explanation.

  • @Kashmirhouseplans
    @Kashmirhouseplans 3 ปีที่แล้ว +2

    I was watching your videos before 2 years
    And now it suddenly came in my recommendation
    And i came to know you have grown a beard 😂
    ❤️

  • @nicolastorres147
    @nicolastorres147 3 หลายเดือนก่อน +2

    Great video! Could you please explain how are the branches of W ordered? 🙏🏻

    • @BurningShipFractal
      @BurningShipFractal 3 หลายเดือนก่อน +1

      Hi! Did you came from the bprp fast channel’s newest video?

  • @phandinhthanh2295
    @phandinhthanh2295 3 ปีที่แล้ว

    How is that a solution to the equation ? How do you compute the numerical solution from that answer ?

  • @GnarGnaw
    @GnarGnaw 3 ปีที่แล้ว +3

    Really cool trick with the Lambert W function.
    Will you do an extension video for nth root of n vs lnx?

    • @blackpenredpen
      @blackpenredpen 3 ปีที่แล้ว +1

      like how?

    • @danielnieto7714
      @danielnieto7714 3 ปีที่แล้ว

      @@blackpenredpen I think he wanted to say nth root of x. Basically if there is some n which makes the ln bigger than the root. But looking at the limit i think this is never gonna happen xd

    • @GnarGnaw
      @GnarGnaw 3 ปีที่แล้ว

      Sorry, I meant Xth root of X, as in x^(1/x).

    • @paolomenardi3483
      @paolomenardi3483 3 ปีที่แล้ว

      @@blackpenredpen Could be interesting to find the value a (0

    • @aidancheung7264
      @aidancheung7264 3 ปีที่แล้ว

      @@danielnieto7714 In my humble opinion, I think there is no sol of n that will satisfy your statement. Like I tried to conpare the nth root function and natural log function that i got lim x -> inf ( x^1/n ÷ ln x ). After doing the L 'Hospital's Rule, I get x^(1/n) ÷ n, and i plug this in walfram alpha. It shows that no n > 0 satisfy the result of getting 1. So I think there won't be a nth root that will actually eventually be smaller than ln. (I don't know if my calculations is wrong tho.)

  • @ricksanchez4492
    @ricksanchez4492 3 ปีที่แล้ว

    Could this be generalised as
    Lim as x->infinity of (nth root of x)
    is always bigger than
    Lim as x->infinity of (log n of x)?

  • @gogo-pj2lm
    @gogo-pj2lm 3 ปีที่แล้ว +4

    Another easy way to do it: For n in N, we want to compare x^(1/n) and ln x when x tends to positive infinity. Taking ln for both, then it is to compare 1/n * ln x and ln ln x. If we fix n, then the magnitude of 1/n is irrelevant. We may as well just say we are comparing O(ln x) and O(ln ln x). Since x > ln x for x > 0 (which can be verified by computing the minimum of f(x) = x - ln x), we have ln x > ln ln x by the fact that ln is increasing. Thus, x^(1/n) >> ln x for each n in N.

    • @papetoast
      @papetoast 3 ปีที่แล้ว

      Nice

    • @blackpenredpen
      @blackpenredpen 3 ปีที่แล้ว

      Wow! Really 😎

    • @MarcoMate87
      @MarcoMate87 3 ปีที่แล้ว

      To be honest, the magnitude of 1/n is not so irrelevant. In general, proving that f(x) > g(x) for all x in a certain domain D doesn't really imply that, m*f(x) > g(x), neither in the same domain D nor in a domain C smaller than D (where m is a positive real number). For example 2x > x for all x > 0, but for m = 1/4 we have m*2x = x/2 < x for all x > 0. Therefore proving that ln x > ln (ln x) for all x > 1 is not sufficient to prove that 1/n * ln x > ln (ln x) for all x > 1 and for each n in N. The last inequality is indeed false, in the sense that for n = 3 we have just seen in the video that the function cbrt (x) is eventually bigger than ln (x), but not for all x > 1.

  • @bernardlemaitre4701
    @bernardlemaitre4701 3 ปีที่แล้ว +1

    ln(x^2) is define on R - {0} then ln(x^2) = 2 ln(x) which is now define on ]0 , +infini[ Why there is a diff between this two domains defintion for the same function ?

  • @aniruddhvasishta8334
    @aniruddhvasishta8334 3 ปีที่แล้ว

    I think this is because the graph of the inverse of a function is the graph of the function but reflected along the line y=x. Therefore since exponential functions get bigger than polynomial functions normally, the reflection makes the root functions get bigger eventually and the log functions relatively smaller.

  • @Ninja20704
    @Ninja20704 3 ปีที่แล้ว +6

    This is really interesting. Its also cool that you generalised that x^(1/n) is always bigger than lnx as x goes to infinity from "The List". I just wonder if it's possible to prove it. Still very useful.

    • @blackpenredpen
      @blackpenredpen 3 ปีที่แล้ว +3

      Yes this is how I introduce “the list” to my calc students.

    • @hattapalkan8395
      @hattapalkan8395 3 ปีที่แล้ว +3

      exponentials grow faster than polynomials. hence the inverse of polynomials will grow faster than of the exponentials. try to think like that, it probably will make sense.

    • @Ninja20704
      @Ninja20704 3 ปีที่แล้ว

      @@hattapalkan8395 thank you. I think i understand now.

    • @hattapalkan8395
      @hattapalkan8395 3 ปีที่แล้ว

      @@Ninja20704 glad i could help!

    • @Joffrerap
      @Joffrerap 3 ปีที่แล้ว

      To prove the limit of x^a/ln(x) when x goes to infinity is 0 (and with that, that x^a Gets arbitrarly larger than ln(x) ) , do the change of variable x=e^y

  • @israelruiz2906
    @israelruiz2906 2 ปีที่แล้ว

    What does about the function represented by w

  • @fun_engineering5710
    @fun_engineering5710 3 ปีที่แล้ว

    What is the software used in 4:27​ the most satisfying part.
    Thank you

    • @ruben3941
      @ruben3941 3 ปีที่แล้ว

      Geogebra

  • @blueblackpenn6368
    @blueblackpenn6368 3 ปีที่แล้ว

    Which software program are you using for plotting graphs

  • @JayTemple
    @JayTemple ปีที่แล้ว

    I remember being told point-blank that any positive-valued power (i.e., exponent is greater than 0) eventually outgrows the log function. Now I understand why!

  • @redsusoverparadise2700
    @redsusoverparadise2700 ปีที่แล้ว +1

    An interesting way to explain Big-O notation (kinda)

  • @kacperkramarz-fernandez5275
    @kacperkramarz-fernandez5275 3 ปีที่แล้ว

    Hey BPRP, so what's the maximum n, for which x^(1/n)infinity?

    • @dlevi67
      @dlevi67 3 ปีที่แล้ว +1

      There is no maximum. This is evident from the process that Steve follows from 2:30 to 4:00 - just replace '3' as the index of the root with a generic n and you will always come up with the conclusion that the limit of the ratio is ∞ for any n.

  • @matthewodell9129
    @matthewodell9129 3 ปีที่แล้ว

    Quick question: other than brute forcing this by looking at the graphs out to an arbitrarily large x-value, is there any way to tell that these two functions only have the 2 intersections?

    • @JonCookeBridge
      @JonCookeBridge 3 ปีที่แล้ว

      Differentiate y = cuberoot(x); also differentiate y =ln x.
      Observe that after that second intersection cuberoot(x) will always have a larger gradient than ln x, so there can be no more turning points.

  • @axbs4863
    @axbs4863 ปีที่แล้ว +1

    I just picked some big number n, where n/3 is an integer (like 900). e^900. cbrt(e^900) = e^300. ln(e^900) = 900. e^300 > 900 clearly. Therefore cbrt(x) grows faster.
    Sometimes its nice not to be technical

  • @shilpisarker4344
    @shilpisarker4344 3 ปีที่แล้ว

    You are great.

  • @meable3763
    @meable3763 ปีที่แล้ว +1

    Does this mean that x^(1/x) eventually overtakes lnx? Doesn't x^(1/x) tend to 1?

  • @willom9511
    @willom9511 3 ปีที่แล้ว +1

    Facts bro. I love your videos 😆😆😆

  • @SHASHANKRUSTAGII
    @SHASHANKRUSTAGII 3 ปีที่แล้ว +1

    This is a part of Algo. Bro I suggest you to make videos on computational complexity. Teach theory of computation

    • @dlevi67
      @dlevi67 3 ปีที่แล้ว

      This is standard function analysis, nothing particularly connected with algorithms. Not that computational complexity isn't interesting, so a vote from me for that too!

  • @fungouslobster5123
    @fungouslobster5123 3 ปีที่แล้ว

    in real analysis 2 and still have no clue how to solve this without the video lmao

  • @trueriver1950
    @trueriver1950 3 ปีที่แล้ว +1

    Why do you use a fish as the argument of the Lambert fn?
    Is this a common notation or a BPRP invention?

    • @dlevi67
      @dlevi67 3 ปีที่แล้ว +2

      It's his invention. The point is that it doesn't matter what you put in, but the argument of the product and the log has to be exactly the same.

  • @Lucas-ys3vf
    @Lucas-ys3vf 3 ปีที่แล้ว

    What about complex solution(s) ?

  • @scanerang
    @scanerang 3 ปีที่แล้ว

    The first question can also be anwsered by looking at the inverse of the functions (x^3 and e^x) and asking which one grows the slowest. x^3 grows the slowest, thus it's inverse 3√x grows faster than ln(x).

  • @SzanyiAtti
    @SzanyiAtti 3 ปีที่แล้ว +4

    I did it by substituting in u, where x=e^3u, and then the question become whether e^u or 3u is bigger, and of course an exponential function grows faster than a linear one.

    • @anonymousfry
      @anonymousfry 3 ปีที่แล้ว

      This one is great! Is there a name for this method or did you come up with it yourself? Also how did you specifically find f(u) for x

    • @pravargupta6285
      @pravargupta6285 3 ปีที่แล้ว

      But this substitution has a miatake because cbrt of x can be negative while e^3u is always +ve..

    • @samuelwilliams6937
      @samuelwilliams6937 3 ปีที่แล้ว

      @@pravargupta6285 u doesn't necessarily have to be an integer, take complex values and take the modulus

  • @BM-bu4xd
    @BM-bu4xd 3 ปีที่แล้ว

    why doing the lim of the derivative quotient is giving you the solution?

  • @AhmedHan
    @AhmedHan 3 ปีที่แล้ว +1

    Question: For which largest degree of root of x, ln(x) will be largest at infinity?

    • @dlevi67
      @dlevi67 3 ปีที่แล้ว

      Your question is not making sense

  • @12wholepizzas13
    @12wholepizzas13 3 ปีที่แล้ว

    Just like you did a vid about x^y vs y^x could you do x tetration y vs y tetration x

  • @angelmendez-rivera351
    @angelmendez-rivera351 3 ปีที่แล้ว

    This can be generalized to any root. The nth root of x, in its rigorous form, is defined to be equal to exp[ln(x)/n]. So exp[ln(x)/n] = ln(x). This is equivalent to -1/n = [-ln(x)/n]·exp[-ln(x)/n]. This implies ln(x) = -n·W(-1, -1/n) or ln(x) = -n·W(0, -1/n). If you choose x such that ln(x) > -n·W(-1, -1/n), then it will be apparent that exp[ln(x)/n] > ln(x), hence proving the root grows faster.
    Another form to prove it is by realizing that ln(x) = exp(ln[ln(x)]), so comparing the nth root to the logarithm is equivalent to comparing ln(x)/n to ln[ln(x)], and with this, it does become somewhat more apparent that the formed grows faster.

  • @andreamusso1469
    @andreamusso1469 3 ปีที่แล้ว

    If I remember correctly, there's no real number to express the order of infinity of ln (x). You'd have to have x^n with n being bigger than 0, but smaller than all numbers smaller than 0 (but no such number exists in R). Is that correct, or am I mistaken?

    • @dlevi67
      @dlevi67 3 ปีที่แล้ว

      In a sense. But now consider ln(ln(x))... and you see why people came up with non-standard analysis.

  • @planck8181
    @planck8181 3 ปีที่แล้ว

    Haha I feel like it's also cuz the inverse of the two would be an exponential and the other would he a polynomial... and so exponential should always be larger than polynomial right?

  • @barryzeeberg3672
    @barryzeeberg3672 2 ปีที่แล้ว

    the wofram screen that you put up at the end is too fast to see . . .

  • @chaktr466
    @chaktr466 3 ปีที่แล้ว

    I would have preferred to compare log to x^(1/n) where n is a positive integer

  • @derbeste2768
    @derbeste2768 3 ปีที่แล้ว

    where are you from bro?

  • @merajularefinpial3639
    @merajularefinpial3639 3 ปีที่แล้ว

    what software did you use to plot the graphs?

  • @mathematicsmi
    @mathematicsmi 3 ปีที่แล้ว +6

    Great job... it’s cool... 😎

  • @Kamyak
    @Kamyak 3 ปีที่แล้ว

    Dont know if my method is correct or no.
    First Take two functions y=x^3 and y=e^x
    Since the second functions is exponential and will take over x^3 at some point so e^x is bigger than x^3
    So the inverse of e^x is smaller than inverse of x^3

  • @geosalatast5715
    @geosalatast5715 3 ปีที่แล้ว

    What happens when we have this: f(x)=x^(1/a), a=lim (t->infinity) t and we want to solve lim (x->infinity) f(x)/lnx????? Is this even a thing?? Is it computable?? And if it is how we can solve it?? Does the solution tell us anything?

  • @mokouf3
    @mokouf3 3 ปีที่แล้ว

    How about x^(1/x) ?

  • @linusyootasteisking
    @linusyootasteisking 3 ปีที่แล้ว

    i didn't know about the w-function. got stuck at e^3=(e^x)/x :(

  • @microscopicallysmall
    @microscopicallysmall 3 หลายเดือนก่อน

    Does this mean that ³√(∞) will give a larger ∞ than ln(∞)?

  • @nathancheese8645
    @nathancheese8645 5 หลายเดือนก่อน

    What is the maximum of ln(x)-x^1\12

  • @RoMaths
    @RoMaths 3 ปีที่แล้ว +1

    Can I get a heart from Blackpenredpen???
    Huge appreciation to you from India 🇮🇳🇮🇳

  • @weylguy
    @weylguy 3 ปีที่แล้ว +3

    I can almost always tell now when the Lambert function will come into the picture.

    • @barbietripping
      @barbietripping 3 ปีที่แล้ว +1

      It's pretty much whenever x is in a log or exp but also outside of said function

  • @77Chester77
    @77Chester77 3 ปีที่แล้ว

    I have two question regarding this video:
    1) are there always TWO solutions (intersecting points)?
    2) If there are always two solutions, what is the biggest difference between ln(x) and x^(1/n) for x being inside these two intersection points

    • @Yougottacryforthis
      @Yougottacryforthis ปีที่แล้ว

      Differentiate the difference function and find the max using Fermat theorem

    • @77Chester77
      @77Chester77 ปีที่แล้ว

      @@Yougottacryforthis thank you

  • @noway2831
    @noway2831 3 ปีที่แล้ว

    You can do it faster if you differentiate both cbrt(x) and ln(x), and you get cbrt(x) = 1/3 int x^(-2/3) dx and ln(x) = int x^(-1) dx. -2/3 > -1, thus for some x in R+ we have cbrt(x) > ln(x) (via comparison)

  • @danielbaimurzin9066
    @danielbaimurzin9066 3 ปีที่แล้ว

    Hello, I have interesting question for you: how to solve lnx =sinx?

    • @carultch
      @carultch 2 ปีที่แล้ว

      I don't think there is an analytical solution to it.

  • @cybergreg58000
    @cybergreg58000 3 ปีที่แล้ว

    It can be solve doing ln(x)-x^1/3=0. U have to look at it like a function

  • @lordshen3078
    @lordshen3078 3 ปีที่แล้ว

    didnt even sa thank u for derivatives at the side but he is saying welcome🤣

  • @sugarfrosted2005
    @sugarfrosted2005 3 ปีที่แล้ว

    In a way isn't ln(x) the function that is asymptotically smaller than all of x^(1/n)?

  • @jaskaransingh7025
    @jaskaransingh7025 2 ปีที่แล้ว +1

    Let's say the question was (3rd root of x) wich is also x^1/3 and let's say u were to say x^1/3 = ln(x) how would u solve for x , I had a lil problem with this one but it was just me making a mistake and the answer I got was {x = -27 LambertW (-1/3 )^3 , x = -27 LambertW (-1, -1/3)^3 }
    It would be nice if u made a vedio on this so I can also confirm my answer that would be much appreciated 😊

  • @Akku8581
    @Akku8581 3 ปีที่แล้ว

    Where were you during my uni days?

  • @dekeltal
    @dekeltal 3 ปีที่แล้ว

    An honest question - we work hard to rearrange the equation, so that we can use the W function and get solutions. To calculate the W function value we will need to use some algorithm like Newton's method. BUT - seriously, we could have used Newton's method already on the original problem - cbrt(x)-ln(x) = 0. So we just adjusted it to use a named function, but did we really make it any simpler?

    • @dlevi67
      @dlevi67 3 ปีที่แล้ว

      Couple of interesting points coming out of your question:
      1. Without an analytical solution to steer you, Newton (or any other root-finding method) may converge to the 'wrong' solution. For example, for starting values below 26.87, Excel's built-in Newton-Raphson algorithm converges on the zero at 6.4... rather than the one at 93.3... , and you have no way of knowing where is the zero above that (since you "don't want" to use W in this case). For the cube root the 'correct' initial guess is small enough that it's easy to get the algorithm to work. For the 12th root... not so.
      2. How do you calculate the numerical values of cuberoot(x) or ln(x) to use Newton's method to find the solution? Yep, correct - using a variety of numerical algorithms (usually series) that converge to their approximate value. Since similar algorithms exist for W as well, why not use those directly?
      In other words, W is not such an extraordinary function. It is introduced later in mathematical studies because it relies on the student having acquired other concepts first. Just like roots, exponentials, logarithms and trigonometric functions. Quite arbitrarily (not completely), those are considered 'elementary', but there is nothing beyond familiarity that makes those 'elementary' functions truly 'elementary'.