Solve Multiple Environments with One Agent (DiscretizedDQN)

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 พ.ย. 2024

ความคิดเห็น • 11

  • @hazemahmed8333
    @hazemahmed8333 4 ปีที่แล้ว

    this is the most elegant DRL tutorial on youtube thank you so much !!

  • @abramswee
    @abramswee 2 ปีที่แล้ว

    thank you very much for creating this channel and sharing your knowledge!

  • @mohammedal-hitawi4667
    @mohammedal-hitawi4667 2 ปีที่แล้ว

    Great video please add Dueling DQN Algorithm for CartPole

  • @andreamassacci7942
    @andreamassacci7942 5 ปีที่แล้ว +1

    Thanks for your service

  • @yanlab2170
    @yanlab2170 4 ปีที่แล้ว

    Great videos! Will you cover other models like policy gradients?

  • @anmolgupta8630
    @anmolgupta8630 4 ปีที่แล้ว +3

    I am getting an error when applying the code in any of the continuous action problems. The error I am getting is: Cannot feed value of shape (1, 3, 1) for Tensor 'Placeholder:0', which has shape '(?, 3)'.
    Any suggestion?

    • @carlji2869
      @carlji2869 4 ปีที่แล้ว

      same problem here. Wonder if it's tf version problem?

    • @TUMENG-TSUNGF
      @TUMENG-TSUNGF 3 ปีที่แล้ว

      Same

    • @MythicStarboy
      @MythicStarboy 3 ปีที่แล้ว

      Change this in DiscretizedDQNAgent.get_env_action():
      if not self.is_discrete:
      action = [self.actions[action, 0]]
      return action

  • @TheRealRoySadaka
    @TheRealRoySadaka 5 ปีที่แล้ว

    Great video thank you very much!
    Do you think you can make a tutorial on how to make reinforcement learning on non-gym environment?
    for example, an agent that can learn to play Agar.io only from looking at the screen and exploring the env.
    Again, many thanks for the awesome videos you put on this channel :)

    • @TheComputerScientist
      @TheComputerScientist  5 ปีที่แล้ว

      Yes I agree! I'm working on some custom RL environments for my next video and hope to progress toward something like what you mentioned