Deriving center of mass equations for a lamina

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ม.ค. 2025

ความคิดเห็น • 15

  • @adamzhuang8132
    @adamzhuang8132 4 ปีที่แล้ว +1

    The explanation was very easy to understand. you made life so much easier. Thank you David! keep up the work.

  • @martovify
    @martovify 4 ปีที่แล้ว +6

    thanks, I dont know Why is it so hard for people to just explain this stuff instead of popping canned formulas out of their asses.

    • @rainiersauer4288
      @rainiersauer4288 4 ปีที่แล้ว

      Well, it's because they only know its use, not understand how it works.

  • @RamizZamanJEEPhysics
    @RamizZamanJEEPhysics 4 ปีที่แล้ว +2

    This is what I was looking for

  • @lil_nut2232
    @lil_nut2232 2 ปีที่แล้ว +1

    Legend

  • @tb2748
    @tb2748 4 ปีที่แล้ว +1

    so, I'm confused at 1:44. when i use dimensional analysis to check the units for mass_slice, I get density * area = (kg/m^3) * (m^2) = kg/m. but clearly, kg/m are not the proper units for mass (or am i wrong? i'm not a physics student, never have taken a physics class). so i'm confused here since it would appear we aren't actually finding mass.
    edit: nevermind, i used the wrong definition of density. since we are working in a 2d environment, density in this case is area density (or kg/m^2). the units work out now

  • @ewilson33bc
    @ewilson33bc 6 ปีที่แล้ว +1

    Adorable! Thanks for the explanation

  • @gaurangshukla9534
    @gaurangshukla9534 3 ปีที่แล้ว

    Thanks for helping sir!!👍

  • @dlippmanmath
    @dlippmanmath  12 ปีที่แล้ว +3

    With lamina problems, we assume rho is an area density, not a volume density.

    • @jspharpscorperation2826
      @jspharpscorperation2826 8 หลายเดือนก่อน

      Ah! This is exactly what I was having issues with trying to understand my textbook's explanation. Thank you so much Dlipp!

  • @markkennedy9767
    @markkennedy9767 2 ปีที่แล้ว

    Can you explain mathematically why we can always find a line through a lamina (eg a horizontal line y=a in some coordinate system on the lamina) such that the moments on either side of this line sum to zero. It's intuitively obvious physically (hanging plumb lines etc) but I just can't prove this mathematically. The mathematics involves the integral of all the moments of every point mass of the lamina on either side of such a line, putting this integral equal to zero and solving for the coordinate of the centre of mass. But why can we always assume we can put such an integral equal to zero in the first place.

  • @jas4768
    @jas4768 6 ปีที่แล้ว

    YOU ARE AWESOME

  • @ammarnasir2077
    @ammarnasir2077 6 ปีที่แล้ว

    Thank you

  • @pavanajsridhar939
    @pavanajsridhar939 4 ปีที่แล้ว

    I think you forgot the summation. It has to be a double integral right?

  • @KR-sg3qd
    @KR-sg3qd 6 ปีที่แล้ว

    u r insnae beast ty g