June 3, 2021 - R-Ladies Dallas: "Latent Profile Analyses using tidyLPA" with Danica Slavish

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ม.ค. 2025

ความคิดเห็น • 8

  • @VeejayDiesel
    @VeejayDiesel หลายเดือนก่อน

    Great video. Imputation handles the missing values. So for all the missing data it will calculate scores. LPA uses a couple of algorithms but you could also handle missing values with a common package like ‘mice’ before running the model. I like this approach, it’s not so much black box like the kmeans and other clustering…

  • @Quynhhoaquynh
    @Quynhhoaquynh ปีที่แล้ว

    this is useful. but i don't really understand what CPROB1mean

  • @CJvanLissa
    @CJvanLissa 2 ปีที่แล้ว

    Really wonderful to see this instructional video!

  • @teakrose5296
    @teakrose5296 3 ปีที่แล้ว +1

    Great presentation, however the link to the data shown at 26:39 might be broken. It does not link to the dataset.

    • @teakrose5296
      @teakrose5296 3 ปีที่แล้ว +1

      Nevermind! Just figured out the last digit isn't a "1", it's a lowercase L

    • @JordanaBreton
      @JordanaBreton ปีที่แล้ว

      Thank you for this! This saved my butt, thanks for posting this!!!!@@teakrose5296

  • @kepo364
    @kepo364 3 ปีที่แล้ว

    wow! this is useful. do u think R is easier to use than Mplus in LPA? I find it interesting that the tutorial on doing LPA thru MPlus is scarce (in contrast to LCA in MPlus or LPA in R)

    • @elendilnix
      @elendilnix 2 ปีที่แล้ว +1

      dunno, but R is cheaper.