Calculating π by hand: the Chudnovsky algorithm

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 พ.ย. 2024

ความคิดเห็น • 1.1K

  • @TheApple176
    @TheApple176 6 ปีที่แล้ว +2377

    The accuracy on the first term was brilliant, especially considering that you used the Parker Square root of 10005.

    • @oscarsmith3942
      @oscarsmith3942 6 ปีที่แล้ว +203

      Given that the actual is 10.024996, I don't think that broke things too badly.

    • @skepticmoderate5790
      @skepticmoderate5790 6 ปีที่แล้ว +107

      Oscar Smith I think you mean 100.024997.

    • @mfhasler
      @mfhasler 6 ปีที่แล้ว +39

      Well, the continued fraction [3, 7, 15, 1, 292] = 103993 / 33102 also yields 3.141592653... with less effort.
      BTW, the way he subtracts numbers seems quite complicated to me O_o.

    • @ChiefStyn
      @ChiefStyn 6 ปีที่แล้ว +5

      ROFL

    • @benjaminwilkin2960
      @benjaminwilkin2960 6 ปีที่แล้ว +139

      I think you mean ~100

  • @SchutzmarkeGMBH
    @SchutzmarkeGMBH 6 ปีที่แล้ว +718

    sqrt(10005)=100.025
    Parker square root

    • @sunday87
      @sunday87 6 ปีที่แล้ว +50

      More like the first-order Taylor series square root :D

    • @nikelf1
      @nikelf1 6 ปีที่แล้ว +25

      It was an approximation, however he was *VERRY* close. Asking Siri (who uses Wolfram Alpha) even she approximate it to 100.025. Using Wolfram Alpha you get the approximation of 100.0249968757810...

    • @ABaumstumpf
      @ABaumstumpf 6 ปีที่แล้ว +71

      It is a decent approximation - i think and error of 10^-7 is acceptable to be used in another approximation.

    • @andrewkepert923
      @andrewkepert923 6 ปีที่แล้ว +12

      well, if you use a more accurate sqrt(10005), then you get more π.
      426880*sqrt(10005)/13591409 ≈ 3.141592653589734207668453591578

    • @dzaima4737
      @dzaima4737 6 ปีที่แล้ว +11

      ABaumstumpf he could've has 13 digits of precision on the 1st calculaion if he had used a more precise square root tho

  • @musikSkool
    @musikSkool 6 ปีที่แล้ว +77

    "I am going to calculate pi by hand again..." All I could think was; "You must have a really big, and really round hand."

    • @davidplayzyt3338
      @davidplayzyt3338 3 ปีที่แล้ว +1

      And he copied all the numbers in a big, round hand!

  • @jimtuv
    @jimtuv 6 ปีที่แล้ว +46

    The hair, or lack of it, is awesome! I did the same thing last year and it was liberating not to worry about the impending baldness. It's a bit cold in the winter so invest in a cap.

  • @Awaclus
    @Awaclus 6 ปีที่แล้ว +706

    That was a real Parker Square of a division.

    • @alcesmir
      @alcesmir 6 ปีที่แล้ว +33

      The division was correct though. The subtraction however...

    • @davidgould9431
      @davidgould9431 6 ปีที่แล้ว +9

      What seemed wrong to me about the division was Matt's statement at 9:11 "If I need extra bits on the end, I just put zeroes". Surely you have to bring down *exactly* one zero each time. Otherwise, you'll never have a zero in the answer - you'll have invisibly skipped them.
      Luckily for Matt, (as calculated by calc, see www.isthe.com/chongo/tech/comp/calc/ ):
      42698672 / 13591409 ~3.14159275171544024611
      and Matt didn't get anywhere near the first 0 of the answer.

    • @blackmephistopheles2273
      @blackmephistopheles2273 6 ปีที่แล้ว +1

      Taking more piss than a racetrack of thoroughbreds....

    • @tehyonglip9203
      @tehyonglip9203 6 ปีที่แล้ว +1

      it’s not a parker square, it’s extremely accurate, more accurate than you ever meed

    • @emilchandran546
      @emilchandran546 6 ปีที่แล้ว +1

      David Gould mate you would get a zero when the two numbers subtracted at the end are equal 0. He just didn’t go that far. The method was perfectly valid. You’re just confused.

  • @ciahciach
    @ciahciach 6 ปีที่แล้ว +188

    Mind blown part was the most funny thing I have ever seen

  • @marcmaticas
    @marcmaticas 3 ปีที่แล้ว +225

    I find it fascinating that, looking for a good decimal approximation of the number π, you have come up with an extremely accurate approximation of the constant e at 7:25. Although I don't know if it's a coincidence or not.

    • @adamqazsedc
      @adamqazsedc 3 ปีที่แล้ว +18

      Euler number made a cameo!

    • @Kapomafioso
      @Kapomafioso 2 ปีที่แล้ว +20

      :O this blew my mind. Didn't even notice that watching it the first time!

    • @tanujvishwakarma1395
      @tanujvishwakarma1395 2 ปีที่แล้ว +10

      wow , correct upto 7 decimal places ,nice observations, even this is blowing my mind now

    • @omaanshkaushal3522
      @omaanshkaushal3522 ปีที่แล้ว +8

      pi and e go hand in hand everywhere.... "Where there's a pi, there's an e"

    • @dogol284
      @dogol284 ปีที่แล้ว +3

      @@omaanshkaushal3522squares are god's favorite exponents

  • @andy4an
    @andy4an 6 ปีที่แล้ว +162

    that converges STUNNINGLY quickly. WOW.

    • @Gold161803
      @Gold161803 6 ปีที่แล้ว +12

      weesh It had better: it's hideous!

    • @41-Haiku
      @41-Haiku 6 ปีที่แล้ว +1

      Gold161803 It's amazing how many interpersonal relationships function more or less in this manner.

    • @michaelwoodhams7866
      @michaelwoodhams7866 6 ปีที่แล้ว +6

      Every iteration gives approximately another 14 decimal places

  • @rainworldenthusiast
    @rainworldenthusiast 5 ปีที่แล้ว +40

    13:45 the face I make every time I finish a calculation and my answer isnt any of the choices

  • @johnchessant3012
    @johnchessant3012 6 ปีที่แล้ว +482

    7:25 27182818 (hmm... seems familiar...)

    • @LightyNourT
      @LightyNourT 6 ปีที่แล้ว +49

      its the e

    • @xXTomokoKurokiXx
      @xXTomokoKurokiXx 6 ปีที่แล้ว +23

      John Chessant I noticed that too. Coincidence? ...probably.

    • @Vedvart1
      @Vedvart1 6 ปีที่แล้ว +29

      I wonder if there's any correlation or if its purely a really unlikely coincidence.

    • @nobiiru
      @nobiiru 6 ปีที่แล้ว +119

      e = 3 = pi

    • @je9533
      @je9533 6 ปีที่แล้ว +28

      I dont think it is a coincidense considering that 13591409 is the number from the formula. So when they defined this method of calculating Pi, they probably took the half of e and multiplied it by some power of 10.
      Or it's really a super (un)lucky coincidense. xD

  • @johnchessant3012
    @johnchessant3012 6 ปีที่แล้ว +1711

    Pi Day is now both Einstein's birthday and Hawking's deathday. :(

    • @U014B
      @U014B 6 ปีที่แล้ว +155

      It's also Karl Marx's deathday, so it evens out.

    • @blackmephistopheles2273
      @blackmephistopheles2273 6 ปีที่แล้ว +183

      Fun odd fact, Dr Hawking was born 300 years to the day after Galileo Galilei's death. So, come March 14, 2318 we should have an awesome astrophysicist come back around, kind-of like a Halley's Comet of brains!
      We can only wait in hope, now.

    • @xf99
      @xf99 6 ปีที่แล้ว +24

      ... if the world is still here by then. We live at a time when Hawking is no longer with us and the "most powerful man" on the planet doesn't have a clue.

    • @alexboltz3081
      @alexboltz3081 6 ปีที่แล้ว +7

      Hawking died late yesterday

    • @xf99
      @xf99 6 ปีที่แล้ว +14

      Hawking died on March 14th in the UK. GMT is named after Greenwich, which is in London, which is in England, ...

  • @heyandy889
    @heyandy889 6 ปีที่แล้ว +49

    Love it. I want to see him do this with increasingly sophisticated calculation aids. Like if we granted him a slide rule, how much faster could he go?

    • @Chris-hf2sl
      @Chris-hf2sl 4 หลายเดือนก่อน

      Nice idea, but from my slide rule days, I remember it was hard to get 3 digits of accuracy, which was normally enough for most engineering tasks.

  • @deluxeassortment
    @deluxeassortment 6 ปีที่แล้ว +248

    Calculating Pi is such an irrational thing to do.....

    •  3 ปีที่แล้ว +7

      Almost transcendental.

    • @IntergalacticPotato
      @IntergalacticPotato 3 ปีที่แล้ว +3

      approximating it is very rational though

    •  3 ปีที่แล้ว +4

      @@IntergalacticPotato Only in 22/7 cases though.

  • @__malte
    @__malte 6 ปีที่แล้ว +304

    K= 0 Mind = blown 🤯

    • @Tomwesstein
      @Tomwesstein 6 ปีที่แล้ว +4

      How does my calculator even do it in 0.0001 sec 😂😂😂

    • @peabrainiac6370
      @peabrainiac6370 6 ปีที่แล้ว +22

      Your calculator doesn't really calculate it, it's just a predetermined constant.

  • @scottlott3794
    @scottlott3794 6 ปีที่แล้ว +129

    Wow crazy good estimate on sqrt 10,005! The actual answer is 100.02499, getting 100.025 in a handful of seconds off the back of a napkin was impressive.

    • @ABaumstumpf
      @ABaumstumpf 6 ปีที่แล้ว +9

      Na, the approximation was incredible simple - still very accurate though.

    • @Meodoc
      @Meodoc 6 ปีที่แล้ว +41

      ABaumstumpf What's the point of an approximation if it isnt incredibly simple?

    • @ABaumstumpf
      @ABaumstumpf 6 ปีที่แล้ว +2

      KackBon3rdGen ....................
      Yeah, no. It is to approximate something. This video even is about Pi - a number that needs to be approximated in most scenarios for the simple reason that it is impossible to show it with 100% accuracy as it is transcendental.
      An approximation can be complicated for many reasons - fast convergance, easy hardware synthesis, easy to program, or interesting effects.
      In some cases the approximation can be shown to converge to the real value, but when a specific approximation is used it can cancel out with other parts of the equation making it a lot simpler to use the approximation - which you wouldn't see if you used the 'real' value as a symbol.

    • @slutskystheorem15912
      @slutskystheorem15912 6 ปีที่แล้ว +19

      The method he used is actually equivalent to a differential approximation. The reason that x2 is ignored is because as x tends to zero, d(x2) /dx is zero

    • @akhileshjadhav8213
      @akhileshjadhav8213 6 ปีที่แล้ว

      In india, Even grade 6 students can do this approximations so its not like out of the box maths lol. Illiterate foreigners !!

  • @Jtking3000
    @Jtking3000 6 ปีที่แล้ว +48

    11:08 It's an older meme but it checks out.

  • @jeffirwin7862
    @jeffirwin7862 6 ปีที่แล้ว +4

    I'm impressed that you did all this working out by hand, and more impressed that you made it that far before making a mistake.

  • @NipunChamikaraWeerasiri
    @NipunChamikaraWeerasiri 6 ปีที่แล้ว +53

    Next year:
    Calculating pi using the perfect curvature of Matt's bald head. Looking forward to that one.

  • @SubhashMirasi
    @SubhashMirasi 6 ปีที่แล้ว +361

    Your head shaved look is awesome. Is it pi day special

    • @baguettely
      @baguettely 6 ปีที่แล้ว +8

      subhash mirasi it was shaved in a video he did a few weeks ago :)

    • @peterfireflylund
      @peterfireflylund 6 ปีที่แล้ว +42

      It was just Parker hair, anyway.

    • @littyfam5136
      @littyfam5136 6 ปีที่แล้ว +37

      He was trying to find the surface area of a hemisphere

    • @Krong
      @Krong 6 ปีที่แล้ว

      Pi R Squared Channel rest in peace

    • @benoucakar4871
      @benoucakar4871 6 ปีที่แล้ว +4

      It's called the Parker hair

  • @convergence9990
    @convergence9990 ปีที่แล้ว +11

    Billions must Pi

  • @tristanridley1601
    @tristanridley1601 6 ปีที่แล้ว +17

    I see why they used this for a computer. They are especially amazing at division and subtraction. Binary makes it easier.

    • @vibaj16
      @vibaj16 4 ปีที่แล้ว +8

      Tristan Ridley mainly because it’s pretty much the fastest converging equation for pi (about 14 digits per iteration!)

  • @Czeckie
    @Czeckie 6 ปีที่แล้ว +30

    Hey Matt, it would be a great video to show (to some extent) why is there e at 7:25. I reckon it's connected with how the algorithm was conceived. j-invariant and all that

  • @ronraisch510
    @ronraisch510 6 ปีที่แล้ว +128

    7:25 WTF?? y is e on the board?????

    • @nachiketagrawal5154
      @nachiketagrawal5154 6 ปีที่แล้ว +7

      ron raisch woah, nice observation

    • @IceMetalPunk
      @IceMetalPunk 6 ปีที่แล้ว +35

      I've learned enough mathematics to know that it's probably not at all a coincidence, and there's a valid reason that one of the "magic numbers" used in the series work out to a multiple of e/2. But I haven't learned enough mathematics to know what that reason is XD

    • @ButzPunk
      @ButzPunk 6 ปีที่แล้ว +9

      I think it has something to do with the fact that e ^ (pi * √163) ≈ 262537412640768000 + 744. Someone smarter and less lazy than me can probably figure out why.

    • @photonicpizza1466
      @photonicpizza1466 6 ปีที่แล้ว

      I'm... pretty sure that's an 8. Unless you're not talking about the glyph on the top row, 4th from the right.

    • @benjaminv3748
      @benjaminv3748 6 ปีที่แล้ว +2

      Naturally it's there ;)

  • @UltraCboy
    @UltraCboy 6 ปีที่แล้ว +6

    There’s a reason why you’re my favorite mathematician, Parker.

  • @kevwang0712
    @kevwang0712 6 ปีที่แล้ว +1

    Compared to that first infinite series video done a few years back, this is a wonderful demonstration of how two different series converge on the same constant at different speeds. Incredible how the Chudnovsky gives you that many digits in just two terms!

  • @omikronweapon
    @omikronweapon 6 ปีที่แล้ว +7

    "This is why I pay you the (slight pause) medium bucks!"
    that cracks me up XD

  • @SledgerFromTDS.
    @SledgerFromTDS. 4 ปีที่แล้ว +1

    Thanks for the exact 2 year anniversary of the last video that we did or you did to be exact exact exact about this pi calculating video

  • @tomsmith4090
    @tomsmith4090 6 ปีที่แล้ว +57

    Hey Matt, quick observation I wanted to run by you.
    Today I went back and watched your old video about approximating pi by rolling dice. I wanted to see how accurate this method could be, so I wrote up some code in python to automate it. I was messing around with the variables, like # of sides on the dice and number of dice rolled, and I was trying to optimize it to give the best answer possible. Something that I noticed was that when increasing the number of sides on the dice, accuracy didn't improve linearly. Instead, a highly-divisible number of sides like 30 was more accurate than 31-35, and 36 sides were more accurate than 37-39 sides, 40 sided dice were more accurate than dice with 41-45 sides, and so on. I thought this was really interesting, and was curious if you had any insights as to why using highly divisible dice might increase the accuracy of the program's estimate of pi?
    Great vid as always, thanks for reading!!

    • @Treviisolion
      @Treviisolion 2 ปีที่แล้ว +13

      It could be related to floating point errors. The highly divisible numbers have a lot of factors of 2, which are more accurately represented by floating point numbers.

    • @yoursleepparalysisdemon1828
      @yoursleepparalysisdemon1828 2 ปีที่แล้ว +5

      Damn both this and the comment are both smart. I’d feel bad not leaving anything smart.
      My 10 cents are that code isn’t perfect when doing physical things like dice or even doing anything random. Simulations aren’t perfect with it. Or that could be completely off topic.

    • @jimmysyar889
      @jimmysyar889 2 ปีที่แล้ว +2

      @@Treviisolion wonder if he used an arbitrary precision module what it would be

    • @spoperty4940
      @spoperty4940 ปีที่แล้ว

      considering your using the "math" library, thats the problem it can have more errors deviding more. the true way to simulate this is expressing it in a geometrical manner, you can start with an axis and find your way into a circle(which is what we are looking for anyways), this might be the case of the light beam reflection calculating pi(if you dont know what this means, there is a great video about by 3blue1brown i think), but again i might be wrong as im not familiar with this concept. well you commented 4 years ago, so i guess you alrdy solved this so yea gday

  • @CsongorVarady
    @CsongorVarady 6 ปีที่แล้ว +1

    The mindblow and the sound of silence bits are the quality Standup(maths) this channel is worth watching

  • @Jannfndnanakid
    @Jannfndnanakid ปีที่แล้ว +14

    Chud bros we won

  • @yoursleepparalysisdemon1828
    @yoursleepparalysisdemon1828 2 ปีที่แล้ว +7

    It hurts that he puts his decimal in the middle.

  • @placeboantwerp4312
    @placeboantwerp4312 6 ปีที่แล้ว +2

    Love your work Matt! Strangely nice watching this sort of maths done by hand.

  • @HorzaPanda
    @HorzaPanda 6 ปีที่แล้ว +3

    The actual square root of 10005 being 100.0249969, so really quite a good approximation. Considering you got 6 digits of pi and your only difference is at the 6th digit that's a really fantastic sequence!

  • @ninjaman5j546
    @ninjaman5j546 6 ปีที่แล้ว +2

    That moment you google 42698672/13591409 and it comes up with this video.

  • @broddestrand
    @broddestrand 6 ปีที่แล้ว +5

    10:53
    What you have written down id the correct aproximation of pi to 7 decimal places as the next digit is a 5...

  • @Henkecool15
    @Henkecool15 6 ปีที่แล้ว

    This video holds surprisingly high value in the meme economy, good work!

  • @srgpepper42
    @srgpepper42 6 ปีที่แล้ว +43

    why is he writing decimal points like dot multiplication and dot multiplication like decimal points?

    • @АртемТихонов-й1ю
      @АртемТихонов-й1ю 6 ปีที่แล้ว +15

      It's a british thing, I know sometimes it may be confusing

    • @dharsonohartono7992
      @dharsonohartono7992 6 ปีที่แล้ว

      ?

    • @АртемТихонов-й1ю
      @АртемТихонов-й1ю 6 ปีที่แล้ว +5

      Dharsono Hartono, well in my country we use a comma as decimal separator, so 8·56 would be 8,56 (or 8.56) for example. And for multiplying we commonly write this symbol (·), for instance 5.6=30 would become 5·6=30.

    • @morganmitchell4017
      @morganmitchell4017 6 ปีที่แล้ว +6

      I'm British and that's not a thing. Multiplication dot is in the middle and decimal point is at the bottom. Also, he's from Australia so that may be why.

    • @АртемТихонов-й1ю
      @АртемТихонов-й1ю 6 ปีที่แล้ว

      Morgan Mitchell hmm, weird, not sure about multiplication sign but middle dot is still used as a decimal separator, usually when handwritten.
      Source: www.quora.com/Whats-this-punctuation-·-How-can-I-type-it-on-my-computer-What-is-it-used-to-do

  • @msmyrk
    @msmyrk 6 ปีที่แล้ว +1

    I've never seen that way of doing division before. And I'm glad we can fairly call it Parker Division after that little off-by-one..

  • @sadhlife
    @sadhlife 6 ปีที่แล้ว +64

    Well let's just call it parker pi

  • @zabotheother423
    @zabotheother423 6 ปีที่แล้ว +1

    Next year, calculate pi using the packing fill ratio of a bcc structure (sqrt(3)pi/8). Pack a box with oranges in a bcc structure and calculate the fill ratio. Basically, calculate pi using some fruits and a box

  • @DaveScottAggie
    @DaveScottAggie 6 ปีที่แล้ว +26

    How long did it actually take for the working out? I was impressed with the 3.1415927 on the very first term. That is on the order of 1 millionth of a percent error, which is well within enough precision for many practical applications. The square root approximation was great, too.

  • @ItsJustKorbin
    @ItsJustKorbin 6 ปีที่แล้ว +1

    Always love these Pi day videos

  • @gummansgubbe6225
    @gummansgubbe6225 6 ปีที่แล้ว +10

    And now I know the Parker sphere.

  • @MitchBurns
    @MitchBurns 4 ปีที่แล้ว +2

    So I spent a few hours working it out, but I discovered that if you take a regular polygon of N sides with a perimeter of 2pi the percentage of the way from the verticy to the midpoint so that you have a distance of 1 from the center very very quickly approaches about 18.35%. I find it very interesting that not only does this number converge, but it also converges very quickly! It took a while because I had to use the COH trig identity, the law of cosines, and the quadratic formula, in addition to a fair amount of algebra.

  • @camelcaseco
    @camelcaseco 4 ปีที่แล้ว +3

    all i learned from this is that "

  • @giulia.accaputo
    @giulia.accaputo 6 ปีที่แล้ว +1

    Meeting you at the “Curious Incident” was such an amazing day- how can you make maths so much fun?!

  • @Robi2009
    @Robi2009 6 ปีที่แล้ว +89

    Matt's Pi day video - 90% of comments about his hair :)
    But seriously - whay happened?

    •  6 ปีที่แล้ว +73

      He noticed a trend and decided to extrapolate.

    • @sam08g16
      @sam08g16 6 ปีที่แล้ว +29

      Parker Cancer, it is harmless

    • @EchoHeo
      @EchoHeo 6 ปีที่แล้ว +2

      Pi R Squared Channel
      RIP....

    • @PokeDude1995
      @PokeDude1995 6 ปีที่แล้ว +4

      Ivan Mazeppa congratulations, you're the first person in history to make a Parker Square joke that's actually funny

    • @ElagabalusRex
      @ElagabalusRex 6 ปีที่แล้ว +4

      He's powering his brain using performance-enhancing radium injections

  • @katlin8474
    @katlin8474 6 ปีที่แล้ว +263

    So sad Stephen Hawking died on Pi day. RIP a great mind :'(

    • @janSimiman
      @janSimiman 6 ปีที่แล้ว +37

      WazzupKMS Einstein was born on pi day.

    • @darknessthebrown1818
      @darknessthebrown1818 6 ปีที่แล้ว +5

      RIP Stephen Hawking, hold one fist in the air tonight :(

    • @rebelli65
      @rebelli65 6 ปีที่แล้ว +4

      Yeah, he died today 😪

    • @TomatoBreadOrgasm
      @TomatoBreadOrgasm 6 ปีที่แล้ว +16

      A damn good run for a sufferer of ALS. He provided us with such tremendous advances in physics that we must be forever grateful, but let it not be said that he was hindered from his goals by his horrible disease. The man will be a legend from now to the end of our species, like Archimedes before him!

    • @Hamster-vs2wn
      @Hamster-vs2wn 6 ปีที่แล้ว

      :(

  • @skyscraperfan
    @skyscraperfan 6 ปีที่แล้ว +5

    PS: It would be interesting, if it has even one more digit of accuracy, if you used a more exact estimation of the square route of 10005.

  • @Vic-vq4og
    @Vic-vq4og 5 ปีที่แล้ว

    i feel like this would be an AMAZING way to practice reducing mistakes

  • @MichaelBerthelsen
    @MichaelBerthelsen 6 ปีที่แล้ว +4

    Love the new haircut. Looks great! ;-)

  • @roideschiffres6760
    @roideschiffres6760 11 หลายเดือนก่อน +1

    The whole way to make the divisions at 7:10 is how they though me to do it in school. Instead of doing 9 rows, they made us darw a square with all the multiples.

  • @nberedim
    @nberedim 5 ปีที่แล้ว +7

    k=0 is probably good enough to get you to the moon within a few yards of error.

    • @vibaj16
      @vibaj16 4 ปีที่แล้ว +3

      nberedim I heard somewhere that 30 digits is more than enough for any practical purpose we will ever need. If I remember correctly, this is because it is approximate enough to be precise down to an atom’s width for the circumference of the observable universe...

    • @nberedim
      @nberedim 4 ปีที่แล้ว +1

      @@vibaj16 I don't know if it's 30 or 40 digits, but yes that's the idea.

    • @Leyrann
      @Leyrann 4 ปีที่แล้ว +2

      @@vibaj16 37, if I remember correctly.
      And that's quite a bit more than any practical purpose will ever need.

  • @larsreed7116
    @larsreed7116 6 ปีที่แล้ว +1

    That algorithm is remarkably accurate. It looks like approximating the square root is what caused most of the difference. Inputting 426880 * sqrt(10005) / 13591409 into Google's built in calculator gives me 3.14159265359, which is accurate to that many significant figures (the last digit would be an 8 if truncated, but the next digit is a 9, so Google is rounding up).

  • @aarondavis5386
    @aarondavis5386 6 ปีที่แล้ว +3

    Do your long division in binary, you can avoid all this "how many times does x go into y" and just have "does x go into y"

  • @Deutschebahn
    @Deutschebahn 6 ปีที่แล้ว +2

    re: the approximation, that IS stunningly fast; re: the hair, I just thought "oh thank god he finally bit the bullet and did it" but sounds like you thought "thank god I finally got to do it" haha :). and it looks good!

  • @cinnion
    @cinnion 6 ปีที่แล้ว +3

    Matt... great to see you using the same tricks I have been using for decades, including the massive division...
    And yes, it is sad that it is both Einstein's birthday and Hawking's event-horizon day. Yet another tie between two great individuals.

  • @europa08
    @europa08 ปีที่แล้ว

    13:34 lol. "This is why I pay you the medium bucks" Trent deserves the big bucks!

  • @numbr6
    @numbr6 6 ปีที่แล้ว +9

    355/113 is about as good as this first term. Probably easier to divide by hand as well. :)

    • @cringeSpeedrunner
      @cringeSpeedrunner 11 หลายเดือนก่อน

      That isn’t part of the chudnovsky algorithm, so yeah a little irrelevant

    • @doppled
      @doppled 11 หลายเดือนก่อน +2

      @@cringeSpeedrunner bro replied to a 5 year old comment trying to correct something that didn't need to be corrected

    • @cringeSpeedrunner
      @cringeSpeedrunner 11 หลายเดือนก่อน

      @@doppled Bro tried to correct a correction to a 5 year old comment

  • @kyleMcBurnett
    @kyleMcBurnett 6 ปีที่แล้ว

    Thanks for the ridiculous and ridiculously amazingly pi day video

  • @edmn
    @edmn 6 ปีที่แล้ว +18

    MIND ≈ BLOWN

  • @dirkovic2112
    @dirkovic2112 6 ปีที่แล้ว

    You look so much better with your new hair(less) style!
    Strangely enough I think your shaved head accentuates the hair you still have while your unshaven head accentuates the thinning hair/bold spot.

  • @paoloclp3286
    @paoloclp3286 11 หลายเดือนก่อน +4

    lets chud it up rq

  • @___akuma7026
    @___akuma7026 6 ปีที่แล้ว +1

    I did a calculation for k=2, mostly by hand, using wolfram alpha for the final summations, division, and checking my work. I used Newton's method to get √10005 to be ~2050048640064001/20495363200160 (correct to about 28 decimal places)
    In the end, I got the following monster of a fraction:
    698133748150685240799274301253225532453866700800000/222222873914907800216492660300255490391849918427129. It is correct to 27 decimal places. (3.141592653589793238462643383 4338...) (Should be 3383 27950...)
    This was a monster of a calculation.

  • @goose300183
    @goose300183 6 ปีที่แล้ว +5

    11:05 - 11:20 - I want to certify this section as an official dank meme.

  • @AstAMoore
    @AstAMoore 6 ปีที่แล้ว

    There’s something Douglas Adams-y about you when you do the mind-blowing bits.

  • @oscarfriberg7661
    @oscarfriberg7661 6 ปีที่แล้ว

    That wrong digit in the beginning of a long calculation is so relatable

  • @Hepad_
    @Hepad_ 6 ปีที่แล้ว +6

    So he finally shaved his hair.

  • @alwebbraham8463
    @alwebbraham8463 6 ปีที่แล้ว

    This needs more likes. Love this dude. Thanks for the mind blow

  • @wynautvideos4263
    @wynautvideos4263 6 ปีที่แล้ว +10

    6:22 "42... 69..." and then it cuts away lol 😂

  • @TheDoplarEffect
    @TheDoplarEffect 6 ปีที่แล้ว +1

    Everyone's going on about his hair, but we really need to appreciate the high quality memes in the video

  • @SwiftGames_
    @SwiftGames_ 6 ปีที่แล้ว +8

    Parker hair

  • @saulysw
    @saulysw 6 ปีที่แล้ว

    Great vid, as usual. A few genuine LOL moments, like your approximating a sphere.

  • @unknown360ful
    @unknown360ful 6 ปีที่แล้ว +41

    HAPPY PI DAY!!! But let's face it, it's no longer happy... RIP Stephen Hawking T_T

  • @Theexplorographer
    @Theexplorographer 6 ปีที่แล้ว

    Wooohoo for the new look!! Happy Pi Day. RIP Dr. Hawking. Happy Birthday Einstein!

  • @yuvalne
    @yuvalne 6 ปีที่แล้ว +18

    Is there a GIF version of 11:12 yet, and if not, can I make one?

    • @DadSkool
      @DadSkool 6 ปีที่แล้ว

      not sure of an equivalent phrase but you shouldn't have a problem using it. Im austalian and it just means that the preceding statement is very straight forward and easy,

    • @NearCry91
      @NearCry91 6 ปีที่แล้ว +1

      "Bob's your uncle is an expression of unknown origin, that means "and there it is" or "and there you have it.""

    • @DadSkool
      @DadSkool 6 ปีที่แล้ว

      Thats a better definition

  • @florencefortyseven
    @florencefortyseven 3 ปีที่แล้ว +1

    I love that 666 appears immediately after the mistake. It wasn't your fault, you were cursed!

  • @fqidz
    @fqidz 6 ปีที่แล้ว +8

    I can guess any number you are thinking!
    1) Choose any number
    2) +1
    3) minus the number you chose!
    4) BOOM!! The answer is 1.

  • @adamhrankowski1298
    @adamhrankowski1298 6 ปีที่แล้ว +1

    Hey Matt. X

  • @zainplan
    @zainplan 6 ปีที่แล้ว +15

    Bald Parker square 😎

  • @thebirdaplierphd.memeology3411
    @thebirdaplierphd.memeology3411 3 หลายเดือนก่อน +1

    Using the Chudnovsky algorithm?
    The maths classroom has risen

  • @san_5726
    @san_5726 6 ปีที่แล้ว +4

    Can someone tell me what discovery show does Matt parker do?

    • @Theraot
      @Theraot 6 ปีที่แล้ว +2

      Outrageous Acts of Science, wikipedia says and imdb confirms it

  • @2rrife148
    @2rrife148 11 หลายเดือนก่อน +2

    billions must calculate pi

  • @CrushOfSiel
    @CrushOfSiel 6 ปีที่แล้ว +5

    Should be the Bloodnovsky algorithm, sounds scarier.

  • @RiteshRajbhandari-lp
    @RiteshRajbhandari-lp 6 หลายเดือนก่อน +2

    when you forget to bring your calculator to a math exam

  • @stephenmellor5394
    @stephenmellor5394 6 ปีที่แล้ว +29

    Anyone notice e at 7:25?

    • @littlebigphil
      @littlebigphil 6 ปีที่แล้ว

      [Mind Blown Clip]

    • @MikeOxolong
      @MikeOxolong 6 ปีที่แล้ว

      Is it a coincidence?

    • @stephenmellor5394
      @stephenmellor5394 6 ปีที่แล้ว

      Tazer I would tend to say probably as e and pi appear in lots of places, however, on the second iteration, it doesn't go to e (although it could after lots of iterations)

    • @MikeOxolong
      @MikeOxolong 6 ปีที่แล้ว

      oh

    • @aeden_jacob
      @aeden_jacob 3 ปีที่แล้ว +1

      Where is the e?

  • @manudude02
    @manudude02 6 ปีที่แล้ว

    I think Parker Pi might just be my new fav kids show.

  • @hooyunzhe
    @hooyunzhe 6 ปีที่แล้ว +14

    Hello there. Happy (sad) π day! We'll remember you, Stephen Hawking.

  • @RyanFlee
    @RyanFlee 6 ปีที่แล้ว

    As someone who's also follicly challenged and had to get rid of it's hair roughly one year ago, I commend you to your desicion to approximate the sphere-shape a little bit quicker. It's a tough step but you"ll have to admit that you look so much better afterwards!

  • @BarneyKB
    @BarneyKB 6 ปีที่แล้ว +5

    how can you calculate how many digits are certainly right without already knowing pi? is that possible?

    • @jonsverredyrkolbotn2978
      @jonsverredyrkolbotn2978 6 ปีที่แล้ว +5

      Assuming you know it goes to pi, but you didn't know pi's value. If the difference between the approximation of pi including the k'th and (k+1)'th term is less than 0,000 000 000 5 (5 at the end as you might round up), you know the k'th term has 10 correct digits

    • @Zalied
      @Zalied 6 ปีที่แล้ว

      the easiest way is keep going and going. so if say first run we get 3 second 3.15 third 3.14159......
      you start seeing which numbers stay the same farther and farther. and those must be accurate. thats the easiest way but of course means your last calculation you wont know how many digits are correct but youll know most.
      it also helps when you prove your formula actually gets pi

  • @SongOfStorms411
    @SongOfStorms411 6 ปีที่แล้ว

    What a great approximation. It got you within just a hair of Pi.

  • @Cr42yguy
    @Cr42yguy 6 ปีที่แล้ว +20

    happy π-day!

    • @quantumintellect7261
      @quantumintellect7261 6 ปีที่แล้ว +1

      Cr42yguy Stephen hawking has died (RIP his soul) so it is a day of mourning

    • @Cr42yguy
      @Cr42yguy 6 ปีที่แล้ว +1

      Mythic IQ I know, I just didn't want to mention it in my post. I think the whole scientific community is quite sad about his passing.

  • @rangerocket9453
    @rangerocket9453 23 วันที่ผ่านมา

    3:48 “We gunna FLY through this!”
    _famous last words_

  • @christopherfrench3725
    @christopherfrench3725 6 ปีที่แล้ว +6

    where did his hair go?

    • @brbrmensch
      @brbrmensch 6 ปีที่แล้ว +3

      parker square of a haircut

    • @3snoW_
      @3snoW_ 6 ปีที่แล้ว

      15:40

  • @alanturingtesla
    @alanturingtesla 6 ปีที่แล้ว

    The great thing is I always get a present from Matt for my birthday, can't wait for the next one. :D

  • @minerscale
    @minerscale 6 ปีที่แล้ว +9

    What happened to your hair?

    •  6 ปีที่แล้ว +18

      A freak shoe shining accident.

    • @mb98765
      @mb98765 6 ปีที่แล้ว +4

      15:40

    • @antton9623
      @antton9623 6 ปีที่แล้ว +1

      Breaking Bad

  • @jacobusburger
    @jacobusburger 5 ปีที่แล้ว

    I'm just imagining in 3 centuries from now someone will find a cave wall where someone calculated pi to the 314159th digit but its off by 1. Fantastic video in any case.

  • @Birth_Defects
    @Birth_Defects 11 หลายเดือนก่อน +2

    outrageous acts of science

  • @DiegoDyanClubBand
    @DiegoDyanClubBand 6 ปีที่แล้ว

    I cant describe the beauty of this video. Its 100% funny material! Parker is no longer Michael Palin doppelgänger, but still amazing.

  • @Fazraq
    @Fazraq 6 ปีที่แล้ว

    This is why I am thankful for computers, though I do appreciate that method for dividing larger numbers.