Lecture 11: Regular perturbation methods for ODEs

แชร์
ฝัง
  • เผยแพร่เมื่อ 30 ม.ค. 2025

ความคิดเห็น • 17

  • @stevenstrogatz1
    @stevenstrogatz1  3 ปีที่แล้ว +11

    I made a mistake at around 49:16 when I wrote the formula for t*. The dimensional version of the correction term with the 4/3 in it should have a (v_0)^3 in the numerator, not (v_0)^2. Sorry!

  • @ramskiramski
    @ramskiramski ปีที่แล้ว

    59:15 You can also check out Theorem 9.2 of Verhulst's "Nonlinear Differential Equations and Dynamical Systems" for convergence. :-)

  • @dsharma0108
    @dsharma0108 ปีที่แล้ว

    @1:02:50 , say x =2 , then e^2 / ( 1 - e^2 ) , wont always be > 1 ? Am I missing something here?

  • @cameronspalding9792
    @cameronspalding9792 2 ปีที่แล้ว

    When we solve odes and pdes in perturbation theory, do we always assume that each function is of order 1

  • @emsihongg4868
    @emsihongg4868 3 ปีที่แล้ว

    is the non uniformality of the perturbative series in the end a consequence of f having an essential singularity for \epsilon
    ightarrow 0?

    • @emsihongg4868
      @emsihongg4868 3 ปีที่แล้ว

      i.e. the first example showed a function which is analytic and it had this nice uniform property, the essential singularity function did not enjoy this uniform property, so what happens if a singularity is removable?

  • @wilurbean
    @wilurbean 2 ปีที่แล้ว

    skip to 24:10 for actual method of using perturbation theory.

  • @millamulisha
    @millamulisha 3 ปีที่แล้ว

    y’(x) = y(x)^4 + a(x)*y(x)^2 + c(x); y(0)=0
    Obviously if y(x)^4 -> ε*y(x)^4 then you have the Ricatti Equation plus some nonlinear perturbation (the quartic term) which can be approximately solved by these methods. But… How do you use these methods to solve the original problem without the epsilon?

  • @millamulisha
    @millamulisha 3 ปีที่แล้ว

    Math aside (which is great), the physics in this video is superb.

  • @mohamedkamalabdelrahman
    @mohamedkamalabdelrahman 3 ปีที่แล้ว

    Thank you !

  • @cameronspalding9792
    @cameronspalding9792 2 ปีที่แล้ว

    On the top left it says Sun 14 Mar
    I was born on Sunday 14 March of 1999

  • @millamulisha
    @millamulisha 3 ปีที่แล้ว +1

    Maybe shouldn’t gloss over use of negative binomial theorem…

  • @JulianFernandezBonder
    @JulianFernandezBonder 3 ปีที่แล้ว

    Is this lecture 10 or that one is missing?

  • @alexnelson7744
    @alexnelson7744 3 ปีที่แล้ว +1

    Say, was there a lecture 10? Or is this misnumbered and supposed to be lecture 10?

    • @stevenstrogatz1
      @stevenstrogatz1  3 ปีที่แล้ว +2

      Lecture 10 is coming. I prerecorded lecture 11 and did not mean to post it yet. I'm taking it down to avoid confusion and will put it back up later, after lecture 10 is posted.