Metals, bonds, and band theory - Part 2

แชร์
ฝัง
  • เผยแพร่เมื่อ 6 ม.ค. 2025

ความคิดเห็น • 31

  • @ZombieNinjaTurtle
    @ZombieNinjaTurtle 10 ปีที่แล้ว +16

    Thank you!!! This helped me so much, my profs powerpoints are useless :(
    Plus you have such a happy voice, it makes it more enjoyable ^-^

  • @mcbrown808
    @mcbrown808 2 ปีที่แล้ว

    5:34 you just answered my big picture question that's been bugging me for days. That is, as more Zn atoms incorporate into a solid lattice, for whatever reason, the energy levels of the antibonding and bonding orbitals converge into each other past our reference 0 meaning the energy level of a lone atom. So as you add in, or excite into from lower orbitals, electrons to this mixed band of virtual empty orbitals, they will map to both bonding and antibonding addresses (antibonding by definition existing anywhere but the bond ie can travel into neighbor atoms) and that's why this material conducts electricity at room temperature. In semiconductors I believe the band gap is very small and ambient heat is enough to excite them into antibonding orbitals

  • @mariannetouma1891
    @mariannetouma1891 5 ปีที่แล้ว +1

    Your videos are so underrated! This is amazing. Thank you!

  • @kihustle6184
    @kihustle6184 2 ปีที่แล้ว

    Thank you sir. I had been searching for this particular concept and you perfectly cleared my queries

  • @ak47ahmetak47
    @ak47ahmetak47 10 ปีที่แล้ว

    Thank you a lot . I was studying from slides of a book from which I understood nothing. After watching this video everything became crystal clear.:)

  • @abhinabasaikia6377
    @abhinabasaikia6377 6 ปีที่แล้ว +1

    Why did you draw 4p orbital instead of 4s antibonding orbital in zinc example unlike cu?

  • @RexGalilae
    @RexGalilae 9 ปีที่แล้ว +1

    How can I know if two bands (as in the case with Zinc) will overlap and those which won't (like in your previous example)? Is there a definite way of knowing it or are we supposed to know the cases with all the conductors?

  • @merveKUNAK
    @merveKUNAK 9 ปีที่แล้ว +3

    YOU ARE A GREAT MAN THANK YOU THANK YOU THANK YOU. YOU SAVED MY FINAL EXAM THAAAANNNNKKKSSSSS

  • @mynagias
    @mynagias 3 ปีที่แล้ว

    thank you a lot! i study chemistry in Germany, its hard to understand some explanations in German, but you are really great at explaining the topic!

  • @gianmarcolominchar7975
    @gianmarcolominchar7975 9 ปีที่แล้ว

    Dude,you're awesome! definitely subscribing and showing my peers

  • @vitoriatonini
    @vitoriatonini 10 ปีที่แล้ว +1

    Thank you so much! Best explanation ever!

  • @lies4212
    @lies4212 3 ปีที่แล้ว

    the best explanation!

  • @annadenis8475
    @annadenis8475 11 ปีที่แล้ว

    Awesome explanation, thank you so much!

  • @Madison-rl3xd
    @Madison-rl3xd 6 ปีที่แล้ว

    Thanks so much! Really helped me understand.

  • @ytnpablo08
    @ytnpablo08 11 ปีที่แล้ว

    Awesome...that was a great explanation

  • @VISHALMOHAN1993
    @VISHALMOHAN1993 6 ปีที่แล้ว

    why havent you shown 4S electrons in antibonding orbitals of zinc and instead you showed 4p orbitals?

  • @laukintak4892
    @laukintak4892 8 ปีที่แล้ว

    this is super useful! Thanks!

  • @merveylmaz6096
    @merveylmaz6096 7 ปีที่แล้ว

    Thank you sir!!

  • @Mirage1deluded
    @Mirage1deluded 6 ปีที่แล้ว

    Solid state chemistry is more lovely and easy to catch up comparing to solid state physics(physics student🤔 myself). Thanks for ur valuable lectures. Y can't you show MO diagram for silicon and any insulator. U didn't explain y it have large band gap

  • @charity4613
    @charity4613 7 ปีที่แล้ว

    are the filled bands always called "valence bands" and the empty bands called "conduction bands"? i wasn't sure because on the first picture you named both "valence bands" but not in the second picture

    • @TrueBlueChemProf
      @TrueBlueChemProf  7 ปีที่แล้ว +1

      In hindsight, I don't think that I should have labeled the entire set of levels the "valence band." I think technically the "valence band" is the band of highest energy filled orbitals (like the highest occupied molecular orbital, HOMO, from MO theory) and the conduction band is the lowest energy band of unfilled orbitals (like the lowest unoccupied molecular orbitals, LUMO, of MO theory). Does that help to clarify?

    • @charity4613
      @charity4613 7 ปีที่แล้ว

      yes, thank you!

  • @manishoraonpt7885
    @manishoraonpt7885 7 ปีที่แล้ว

    thx ...awesome help

  • @Oscaredi100
    @Oscaredi100 4 ปีที่แล้ว

    Hey, Clayton. Min 0:00 to 3:25 it's "Valence" or "Valency" not "Valance". You're welcome.

  • @Gurubashy
    @Gurubashy 9 ปีที่แล้ว

    you sound like the guy on Animal Planet 101 dogs

  • @grahamcox8054
    @grahamcox8054 11 ปีที่แล้ว

    Be mine Clayton

  • @yakiryak1983
    @yakiryak1983 7 ปีที่แล้ว +2

    All videos are the same. No one explains why the MOs build up to form bands to begin with, and how does it apply to a 3D array (crystal). And if Cu can form a covalent S-S bond like hydrogen, why does it form crystals and not diatomic molecules??? Useless, just useless.

    • @tunneltrance
      @tunneltrance 4 ปีที่แล้ว

      these are my questions exactly

    • @anushkamisra6472
      @anushkamisra6472 3 ปีที่แล้ว

      th-cam.com/video/Bjf9gMDP47s/w-d-xo.html...watching this might be of some help... I mean it's because copper is a metal unlike hydrogen(which forms covalent bond).. Metal forms metallic bonds creating a sea of electrons effecting all the other n number of atoms beside it.

  • @VISHALMOHAN1993
    @VISHALMOHAN1993 6 ปีที่แล้ว +2

    why havent you shown 4S electrons in antibonding orbitals of zinc and instead you showed 4p orbitals?