Biasing an Audio Transistor

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ก.ย. 2024
  • Biasing an Audio Transistor

ความคิดเห็น • 255

  • @marklowe7431
    @marklowe7431 10 ปีที่แล้ว +25

    Electronics is one skill teaching is another, you do both very well. Excellent video, thank you

  • @davejaguar6532
    @davejaguar6532 2 ปีที่แล้ว +3

    Thank you. That's the clearest explanation and demonstration of this concept that I've yet seen.

  • @bypass666666
    @bypass666666 10 ปีที่แล้ว +14

    This was extremely informative and more easy to understand than many other videos on the same subject I have seen.
    Many thanks for sharing.

  • @joernone
    @joernone 16 ปีที่แล้ว +7

    Rick,
    Probably the greatest benefit of your vids is that they'll digitally remain here for a very long time to come, long after we current viewers are gone. I'd say you're generating a pretty solid and worthwhile legacy.
    As usual, great job, my friend.
    Regards,
    John

    • @IzziedeD
      @IzziedeD 2 ปีที่แล้ว

      and provide value to people over a decade later

    • @clueless_andy
      @clueless_andy 10 หลายเดือนก่อน

      damn...

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  12 ปีที่แล้ว +10

    Everything in the circuit influences the amplification potential of the circuit. R4 is the load of the circuit, R1,2,3 are the biasing resistors, they set the voltage at the base that allows the transistor to work properly. If R4 was changed to 8 ohms, R1,2,3 would need to be changed to set the base so that the transistor will work properly for an 8 ohm load. The amplification of the transistor is the beta of the transistor.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  14 ปีที่แล้ว +3

    Thanks donotfret,
    I used a sine wave generator for this demo. The same generator can produce square wave also. Most TH-camrs are interested in audio equipment so that's why the sine wave. The transistor is making the sine wave at the output. At the output the transistor varies it's resistance which causes the DC to vary. I used a sine wave at the input so it varies the DC as a sine wave at the output.

  • @Mosfet510
    @Mosfet510 8 ปีที่แล้ว

    Great video, it was nice to see one that wasn't rushed! You have probably made a lot of people comfortable enough to try experimenting by showing what to avoid and what makes the transistor happy.

  • @ashrocks8443
    @ashrocks8443 6 หลายเดือนก่อน

    From what I given to understand, the capacitor at the emitter, allows for the signal to be conducted whereas the resistor at the emitter acts as a voltage source courtesy of the current flowing from the collector.
    Thank you for the clear explanation :)

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  11 ปีที่แล้ว +2

    R4 is the load, R1 is the emitter resistor which helps set the bias point or working point at the base. R2 and R3 are chosen to also set the bias/working point, there resistance are high enough not to short out the incoming signal. Resistors are generally the cheapest way to bias the transistor.

  • @dave251430
    @dave251430 16 ปีที่แล้ว

    Awesome video, You're one of the few people on TH-cam that actually educate.... keep up the great work and very much appreciate your videos.
    Take Care,
    Dave

  • @joestone5040
    @joestone5040 9 ปีที่แล้ว

    Thanks for this video! Seeing how the changes in R3 and R2 affect the signal was really helpful.

  • @jimadams2473
    @jimadams2473 10 ปีที่แล้ว

    Very nice explanation of how transistors work. Very clear description of the bias voltages. Thanks!!!

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  15 ปีที่แล้ว +2

    The linearity usually determines how fast the volume/signal increases and decreases. If there is distortion and it is not due to the input sign being distorted it can only be clipping at the top or bottom or both. Thanks.

  • @demios99
    @demios99 16 ปีที่แล้ว

    I have no real knowledge of electronics (actually, I'm yet to become a beginner :)), but despite that, all the concepts you're describing here appear so simple and easy to understand. As joernone said, a real legacy! Thank you very much for the education you provide.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  13 ปีที่แล้ว +1

    @marsenification
    I'm not sure how you wanted to use your dual supply. I would need to know what are the voltages of the power supply. If you can get from 6 to 9 VDC out of it, that is all you need for most transistor circuits.

  • @abeleballestri612
    @abeleballestri612 8 ปีที่แล้ว +2

    Excellent explanation how a bias is made for an NPN transistor.thanks very much

  • @James1toknow
    @James1toknow 10 ปีที่แล้ว +1

    Covered this in my last semester. You described biasing very good. You covered saturation but not cut off.. over all still fantastic.

    • @AllAmericanFiveRadio
      @AllAmericanFiveRadio  10 ปีที่แล้ว +1

      That because if your building and audio amplifier your not wanting to bias to cutoff or saturation, but I have other videos that do get into saturation and cutoff

    • @James1toknow
      @James1toknow 10 ปีที่แล้ว

      Right, I was just saying.

    • @AllAmericanFiveRadio
      @AllAmericanFiveRadio  10 ปีที่แล้ว +2

      I know, I tried to stick to a single subject and make the video short as possible.
      I must say between Google+ and TH-cam, it is beginning to be a real challenge finding comments and responding to them. I sure hope things settle down soon. I may have even block someone without knowing it. Not a complaint, just an observation.

    • @James1toknow
      @James1toknow 10 ปีที่แล้ว

      true

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  14 ปีที่แล้ว

    @jinnaraka
    Download the Electronic Navy Training 24 volume courses. Find my video and in the description is the download link.

  • @insylem
    @insylem 5 ปีที่แล้ว

    Question: At 2:30, you mention that the capicator is 0.02uF (Micro farad) However, the diagram shows 0.02MDF. Wouldn't a capitol M stand for Mega like 10M ohm is 10 Mega Ohms? Also, why say 0.02 micro, instead of 20 nano?

    • @AllAmericanFiveRadio
      @AllAmericanFiveRadio  5 ปีที่แล้ว +1

      I had been working on some early radios 1920-1940's. Back then MDF=uF.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  13 ปีที่แล้ว +1

    @miyukiTS
    C2 blocks the DC from the circuit in front this one or from a signal source, and only lets the AC signal through to the base to be amplified. If a DC signal was allowed through, it would mess-up the basing of the base of this transistor.

  • @abeleballestri612
    @abeleballestri612 8 ปีที่แล้ว

    Ca very simple and nice explanation of how a bias in a transistor ,in this case a NPN , works and how the voltage and currents reacts according to their bias..!i have learnt a lot from this simple lesson. Thanks very much indeed , I enjoyed it. Abele. Suisse

  • @bodx7812
    @bodx7812 10 ปีที่แล้ว

    very useful in designing low ang high level amplifiers...this is the part of where you can achieve good output response if it gets exact and proper biasing.....

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  14 ปีที่แล้ว +3

    Don’t remember the voltage of the input signal, it saw small, less than a volt. For class A you bias the tube/transistor so that the input signal can swing the output equally between the top and the bottom of the power source for the output.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  16 ปีที่แล้ว

    The easiest way is to look at other circuits. The trend for biasing is higher resistance in the front end and lesser resistance toward/at the speaker, in audio amplifiers. This setup did have a good range of resistances for R2 and R3, that would still produce a good output, did not get to show because of time. Tubes usually dont have R3 resistors in the circuits because the internal elements of the tubes supplies it.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  11 ปีที่แล้ว +1

    When you want to build a transistor circuit the first thing to do is to decide what it is you are going to drive with the transistor, my circuit was R4. If I wanted to have R4 at the collector on or off, all I need do is change R2, lower it's resistance enough so it turns off the transistor which will make the collector maximum positive. Then remove R2, and R3 should Drive the transistor into saturation, making the collector voltage very low.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  13 ปีที่แล้ว +1

    @marsenification
    Well, you could use just the common ground and the Plus 9 VDC or just the common ground and the Negative 9 VDC. If you want to make a power output audio amp you could use it as 18VDC and just forget about the common ground from the power supply. If you want positive 18VDC use the negative 9VDC as ground in the circuit. If you want negative 18VDC use the positive 9VDC as ground in the circuit.

  • @socencounter
    @socencounter 11 ปีที่แล้ว

    A not-so-easy concept explained in a simple way! Thank you!!!

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  14 ปีที่แล้ว

    This is done most often in switching circuits. The major current flow in this circuit is through E to C. When the base becomes positive enough the transistor goes into saturation which is the highest current flow possible for this circuit. The current flow through the base is still small. Go down to Radio Shack and buy some 10 cent transistors and experiment. That is how you really learn.

  • @aljosagajst8725
    @aljosagajst8725 6 ปีที่แล้ว +2

    Nice explanation, thanks. Why is the optimal bias at 6v? What is wrong with setting it at little below clipping, around 9,50v in that case? This would give alot more output power, thats the reason I`m wondering why not set it that high.

    • @AllAmericanFiveRadio
      @AllAmericanFiveRadio  6 ปีที่แล้ว

      It's 6VDC because I'm using a 12VDC power supply. If and amplifier clips it produces distortion.

    • @JJ-kf2uk
      @JJ-kf2uk 5 ปีที่แล้ว

      @@AllAmericanFiveRadio Ummm you're using 18V for the supply. Please explain how you arrived at the initial R1, R4 and C1, C2 values. In other words the math behind setting gain, limiting current and determining frequency response.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  11 ปีที่แล้ว +2

    If you know the resistance of the load, the current required to operate the load, and the voltage of the power supply, then you go to the specification sheet supplied by the manufacturer for the transistor you're using. Here you will find the bias voltage needed for your current situation. Then you have to decide on the resistors to supply the bias voltage, that's ohms law.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  16 ปีที่แล้ว

    I have worked in many electronic labs each costing millions of dollars. Companies would not spend this money if experimentation and testing was not absolutely necessary. THANKS!

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  13 ปีที่แล้ว

    @flurng
    R1 produces a voltage drop for the emitter which produces a bias voltage for the base. C1 stabilizes this voltage. Without C1 the bias voltage will change more when current flows through E and C of the transistor. The more the bias voltage changes, the more the the current flow is influenced by the current through the transistor changing the characteristics of the amplifier.

  • @moonaroma1
    @moonaroma1 10 ปีที่แล้ว

    Super Awesome video. Its really easy to understand. Extremely thank you to the video creator/owner :)

  • @cedrickdelacruz8228
    @cedrickdelacruz8228 6 ปีที่แล้ว +1

    This vid deserves a like, keep it up mate! I hope i will learn more of your videos. Cheers!

  • @K5DVT
    @K5DVT 11 ปีที่แล้ว

    Why is a capacitor and resistor(instead of a battery) needed on the emitter of the transistor use?The tube circuits had a smaller battery on the grid.Does this act the same?

  • @angellizarraga4170
    @angellizarraga4170 5 ปีที่แล้ว

    If you keep doing this, you will teachers desappear...thks a lot for your time and knwowlegde and pacent, and... the list go on...

  • @stanvincent7106
    @stanvincent7106 10 ปีที่แล้ว +2

    the maths is simple
    voltage divider vbase=vbattery*r2/(r2+r3)
    the vbase must equal approx veb which in silicon transistors is about 0.7volt (actually 0.6-0.7V depending on current) plus the voltage drop across r1 which is emitter current times r1 .but
    for max signal output and less distortion vcollector to emitter should be (supply voltage /2).
    that means rest of volts are across r4 as r4 here is much bigger than r1.
    lets say vsuppply is 18v .then v/2=9volts
    that means icollector (almost same as iemitter) is 9/33k=0.27ma
    volts across r1 is 150*.27/1000=0.04 volts i.e virtually zero.
    so vbase=0.7+0.04=0.74v or so
    this requires 18*r2/(r2+r3)=0.74v
    choose r2+r2 big enough not to load down the signal source say 500k
    r2+r3=500k
    so 18*r2/500k=0.74
    so r2=20k so r3=500k-20k=480k
    nearest r2=two 10k resistors in series and r3=470k
    exact result vb=18*20/490=0.734 close enough
    in practice make r1 bigger so vb+vacross r1 is less sensitive to individual transistor characteristic and also enabling r2 to be a bit bigger not to load the source.
    (note there is a limit to how big r2+r3 is as the noise generated from the resistors themselves can start to affect the noise output of the circuit. the lower r2+r3 the lower that noise but the more load is placed on the input.Ideally the a/c input resistance should equal or bigger than a/c source output resistance.The input resistance is r2 in parallel with r3 i.e. r2 as r3 much bigger ( and also in parallel with transistor input resistance- in this case beta times re where re=30/(iemitter in ma)
    in this case re=30/0.27=111 ohms.
    if the capacitor where removed the input resistance due to the transistor would be beta times r1 a much bigger number than r2 usually. e.g. beta=400 input res=r2 para r3 para 400*(150+111) (=104k)=16.2k
    the gain of the circuit is virtually r4/re=33000/111=297
    if the capacitor is removed the gain is r4/(re+r1)=33000/(111+150)=126
    assuming the input resistance to the circuit has not greatly reduced the input signal voltage.
    .

    • @AllAmericanFiveRadio
      @AllAmericanFiveRadio  10 ปีที่แล้ว +1

      And then you build it in a lab for testing and adjustment.

  • @donotfret
    @donotfret 14 ปีที่แล้ว

    Great vid, what would I do if I wanted a pulse dc instead of a signwave? Whats making the signwave anyway when a dc is connected? I'm guessing the r1 c1 tank is inducing a signwave?

  • @smiley235
    @smiley235 12 ปีที่แล้ว

    Great video. And as someone mentioned earlier, very pleasant to listen to and easy to follow, thumbs up from me

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  14 ปีที่แล้ว

    R4 is the load/current limiting resistor. Without it the transistor would burn out. If you build this circuit you will get the same results, I used no magic. C2 blocks DC but lets the AC signal through. R1 & C1 are for biasing, together they act like a battery.

  • @gecogexx
    @gecogexx 13 ปีที่แล้ว

    This is explained very well, thank you. these are awesome lab examples for beginners.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  12 ปีที่แล้ว

    Two equal resistor would split the voltage in half. That bias voltage maybe to high, but the bias voltage is also dependent on the load you are driving and also how you want to drive it. Class A will have a different bias voltage than an On-Off function.

  • @terminate5888
    @terminate5888 4 ปีที่แล้ว

    I experienced the same problem when I was designing my CE amplifier. I choose the values of r1 and r2 so that the base-emitter voltage of the transistor was at 0.7V by setting the base to 1.6V, which is the voltage drop across r2. But when I put it all together on the breadboard the circuit didn't work, and the base voltage was 0.58V and the base-emitter voltage was only 0.57V. I realized that I couldn't have any old combination of R1 and R2 to give the correct biasing of 1.6V at the base. As R2 was too high, so even though the base voltage was calculated to be 1.6v, it was much lower as most of the current was flowing through r1 and the base-emitter junction of the transistor. So when biasing the transistor the value of R2 needs to be lower than the base-emitter resistance and so R1 needs to be higher to control the biasing current and the base voltage.

    • @AllAmericanFiveRadio
      @AllAmericanFiveRadio  4 ปีที่แล้ว +1

      That's why there are electronic labs. I have worked in many electronic labs that coast many million of dollars to build and maintain. These companies would not spend that money if it was not absolutely necessary.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  12 ปีที่แล้ว

    Thanks rschandran
    Yes the beta does matter. The higher the beta, the higher the gain of the transistor. So a high beta transistor can be easier to over drive by the input signal. Everything is important in the circuit. I think the best/fastest way to learn is to study existing circuits of the type you want to build. A lot of time and experimenting has gone into a successfully executed circuit.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  11 ปีที่แล้ว

    The emitter resistor creates a voltage drop which raises the bias on the base by the same amount. With the capacitor crossed it, it does act like a battery. The resistor and capacitor last much longer than a battery.

  • @GroverCricketDaisy
    @GroverCricketDaisy 10 หลายเดือนก่อน

    Thanks great video with a well structured explanation I learn't a lot

  • @zbyszekskibinski
    @zbyszekskibinski 15 ปีที่แล้ว

    Excellent show, thank you. As far as I noticed on the oscilloscope as you decreased the resistance of R3, before the transistor got into complete saturation and signal disappeared there was some clipping in its amplitude. Does it sound as nonlinear/unlinear distortion? That explains what happens with the signal when resistors drift off their values. I would really appreciate if you uploaded some videos with IC amplifiers as well. Thanks a million.

  • @terencewright2223
    @terencewright2223 3 ปีที่แล้ว

    Very good , an excellent video to watch. Thank you.

  • @salmanmazhar9044
    @salmanmazhar9044 7 ปีที่แล้ว

    After this short lecture my concept about biasing of transistor is build. Thanks

  • @sivucit
    @sivucit 11 ปีที่แล้ว

    hi, what is the user of R4 and R1. Also is it mandate that base should always be connected with resistor. I underestand that r2 and r3 should be choosen appropirately to have signal amplified so there is no short ..

  • @1959Berre
    @1959Berre 8 ปีที่แล้ว

    Very fine explanation, I like your style, nice and easy. Thank you.

    • @AllAmericanFiveRadio
      @AllAmericanFiveRadio  8 ปีที่แล้ว

      +1959Berre Thanks

    • @orgami100
      @orgami100 8 ปีที่แล้ว

      +AllAmericanFiveRadio ...
      If only my electric class teacher would've explained it like that ( CK722 ) it would've been really helpful...

  • @GrantsPassTVRepair
    @GrantsPassTVRepair 15 ปีที่แล้ว

    Well done. Your video is easy to follow.

  • @philipsilvester
    @philipsilvester 8 ปีที่แล้ว +2

    thanks for sharing, i know finally understand...THANK YOU

  • @abelincolnparth
    @abelincolnparth 5 ปีที่แล้ว +1

    This helps, but could you tell us the exact type of transistor you used and also the signal that was being amplified?

    • @AllAmericanFiveRadio
      @AllAmericanFiveRadio  5 ปีที่แล้ว

      General purpose transistor 2N2222. Signal was small 1/8 VAC or less.

  • @miyukiTS
    @miyukiTS 13 ปีที่แล้ว

    I am new to electronics and my question is why you have a capacitor C2 on the base lane?

  • @youssefdirani
    @youssefdirani 4 ปีที่แล้ว

    Thanks
    Is it better to consider this amplifier or pre-amplifier ? Or does it not matter ?

  • @raguaviva
    @raguaviva 14 ปีที่แล้ว +1

    Awesome job!! Thanks for sharing, it helped me a lot!!!

  • @mixolydian2010
    @mixolydian2010 10 ปีที่แล้ว

    Nice, thank you very much for the explanation and graphics work, helped a lot.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  12 ปีที่แล้ว +2

    I Googled “two transistor amplifier circuit” and of course there are lots and lots of circuits to look through.

  • @satyabanukil779
    @satyabanukil779 10 ปีที่แล้ว

    why forward bias and reverse bias is required with illustration should be helpful for me to get a practical idea on the subject. Thanks

  • @vibra64
    @vibra64 12 ปีที่แล้ว

    Is it true that the amplification of the transistor can be determined by the ratio of R4 and R1?
    R4/R3

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  12 ปีที่แล้ว

    I was using the Leader Audio Generator 27. It was set on high and about mid output. Still not a very strong signal. About 1.8-2.7VAC

  • @flyingfrancisco
    @flyingfrancisco 12 ปีที่แล้ว

    HI Rick
    In this video what was the input signal of the base of the transistor thru the capacitor.
    thx

  • @planker
    @planker ปีที่แล้ว

    Good presentation. I haven't been using the Oscope enough, its time to give it a few choirs.

    • @AllAmericanFiveRadio
      @AllAmericanFiveRadio  ปีที่แล้ว

      You can learn a lot about circuits, using an Oscilloscope. Thank you.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  11 ปีที่แล้ว +1

    Thanks DaxtonProducer
    I'm glad the video helped.

  • @RadioDude1969
    @RadioDude1969 14 ปีที่แล้ว

    Ok, I think I get the point; what really matters, is the current flow - not the voltage alone. If the current flow is limited to safe level, virtually any voltage can be applied at the base. On the other hand, I guess that even a low voltage, say 1 V, could destroy the transistor without any current flow limiting at all. Thanks...

  • @Dad-ij2qy
    @Dad-ij2qy 6 ปีที่แล้ว

    Good explanation. Good test setup. Thank you for sharing.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  13 ปีที่แล้ว +1

    Thanks submission123456
    It can be! It depends on your purpose for the circuit. Here are the three popular configurations. Common collector (this video), common emitter, and common base amplifiers. Just Google them and you will get lots of information. Also look for my video on Navy Electronic training. The link to the downloads is in the description of the video. 24 volumes, PDF files.

  • @rafaellarios3707
    @rafaellarios3707 11 ปีที่แล้ว

    That looks like a LEADER LBO520A oscilloscope, doesn't it? I used to have one 30 years ago.
    You just made me remember when I had to design an audio amplifier when I was a student. The only thing I don't remember is how to select the emitter capacitor. As that was my first course of electronics, the professor just gave us an empirical rule where its reactance had to be who knows how many times the emitter resistor's value.
    Can you please say how you select it?
    Thanks sir ! Good video!

  • @skatedoof
    @skatedoof 11 ปีที่แล้ว

    so say i wanted to work around a known load and battery voltage. What kind of math would i need to determine values for r2, r1, and r3 ?

  • @gseries2567
    @gseries2567 4 ปีที่แล้ว

    thank you from Greece :)

  • @alexandercyborg5308
    @alexandercyborg5308 11 หลายเดือนก่อน

    Old video but great explained bias process..

  • @QAhkam
    @QAhkam 8 ปีที่แล้ว

    Very nice demonstration, Thanks for sharing.

  • @tiputipu0052
    @tiputipu0052 14 ปีที่แล้ว

    and if i just add a tank circuit in base of the transistor and bias it with collector along with resistor and add a feed back coil to collector...will i make a radio????

  • @wetering
    @wetering 3 ปีที่แล้ว

    Thank you for this extremely informative video!

  • @Techno888
    @Techno888 15 ปีที่แล้ว

    Very well explained thank you great job!
    This will help me develop more amp projects.

  • @gvrp2008
    @gvrp2008 15 ปีที่แล้ว

    Thank you for a lucid presentation

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  16 ปีที่แล้ว

    I have read a number of books and if you could understand them, you did not really need to read them, so Im not sure what the point was. I like getting to the point. Most everything in electronics developed from experimentation first, then came the measuring and then the math. Math help to predict result and is an important starting point.

  • @MicroscopicAllan
    @MicroscopicAllan 11 ปีที่แล้ว

    Really like you videos. Thank you very much for the nice explanation on transistors.

  • @thejavaman53
    @thejavaman53 6 ปีที่แล้ว

    This was a very detailed explanation.

  • @ravneetpalsingh
    @ravneetpalsingh 12 ปีที่แล้ว

    Amazing video sir. If you can show the working of R1 and C1 in another vid, it would be great.

  • @dawirelessg
    @dawirelessg 12 ปีที่แล้ว

    why would you no use the same values for r2 and r2 to simply split the voltage in half?

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  15 ปีที่แล้ว +2

    They are very interesting. I uploaded the Navy Electronic Courses to my server. There are 24 PDF volumes and they are excellent. I did a video on the Navy Courses and the link to the download URL is in the 'more info' of the video. I think you would like it. It is great information.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  12 ปีที่แล้ว

    The fastest way to lean circuits is to find some that you are interested in and build them, get them working, then modify the circuit to see what happens.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  15 ปีที่แล้ว

    Clipping occurs here because the circuit tries to put out more, Neg or Pos or Both, than the power supply can deliver.

  • @freewayross4736
    @freewayross4736 ปีที่แล้ว

    Yo i found this gem in 2023 thank you sir

  • @dhawalsinghkushawaha8827
    @dhawalsinghkushawaha8827 4 ปีที่แล้ว

    thank you so much, I was searching for this only.

  • @ro4pvb1c
    @ro4pvb1c 6 ปีที่แล้ว

    Liked and subscribed. Can you explain a vacuum tube amp and maybe show the diagram. I'm looking forward to such video. There are tons of them out there but it seems no one can explain the way you do. You make it seem soo easy. Please show how to build a simple vacuum tube amp !

    • @AllAmericanFiveRadio
      @AllAmericanFiveRadio  6 ปีที่แล้ว

      Lafayette Guitar Amplifier Signal Flow
      th-cam.com/video/tmLMIdTviOg/w-d-xo.html
      Audio Coupling Capacitor, how it Functions in a Circuit
      th-cam.com/video/PAPnwX6YiIM/w-d-xo.html
      AA5 Radio Signal Flow
      th-cam.com/video/zknp0FOkPXU/w-d-xo.html
      Control Grid, Triode Tube
      th-cam.com/video/K_AJRIsNlR0/w-d-xo.html
      Searching My AllAmericanFiveRadio Channel
      th-cam.com/video/4k7ByHqh8Js/w-d-xo.html
      The Vacuum Tube Shortwave Radio password 'allamericanfiveradio'
      www.richardmcwhorter.com/vacuumtuberadio/

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  11 ปีที่แล้ว

    I think I used an example from a Zenith transistor radio or I used an example from the manufacturer's documentation.

  • @astorina
    @astorina 5 ปีที่แล้ว

    Hello
    I have simulated the circuit and it does'nt behave as it should , I wonder if there is not an error in the 150 ohm R1 value ? Brgds

    • @AllAmericanFiveRadio
      @AllAmericanFiveRadio  5 ปีที่แล้ว

      If you have a flat top the bias on the base is to high. If you have a flat bottom the base bias is to low.

    • @abelincolnparth
      @abelincolnparth 5 ปีที่แล้ว

      See my reply, I think the problem is in the 33k ohm resistor, makes more sense to use 330 ohm resistor, I am new to this, the book "Electronics Principles and applications" by Schuler tells how to calculate bias and load lines to get gain, it is fairly straight forward, but does leave some gaps.

    • @astorina
      @astorina 5 ปีที่แล้ว

      @@abelincolnparth thx for your comment and response my own one. I run the proposed schematic with LTSpice and it doesn't work.. the answer (from the boss, thx to him) , doesn't answer my concern, i did not get the english very well and the author answer is unclear to me.

  • @RadioDude1969
    @RadioDude1969 14 ปีที่แล้ว

    I really enjoy your videos - this one is noe exception! Howerver, here's a few things I am wondering about: 1) How come you can apply almost 12 V on the base without destroying the transistor. I thought even 1 V would be too much? 2) What is the purpose of the input capacitor C2? 3) What is the purpose of R1 in parallel with C1? Thanks!

    • @imho2278
      @imho2278 2 ปีที่แล้ว

      I wondered how the transistor survived too!

  • @raindogred
    @raindogred 14 ปีที่แล้ว

    Thanks. very usefull information as i am working on discrete jfet based preamplifier and finding i wide range of variables in the charcteristics of jfets. This gives me some good techniques for biasing - instead of all the crazy math:) Now all I have to do is buy an osciloscope-ouch:)

  • @sivucit
    @sivucit 11 ปีที่แล้ว

    hi, if i want to use transistor as switch what modifications to be done in above cirucit.. please

  • @mitchmarks500
    @mitchmarks500 9 ปีที่แล้ว +3

    Great video, better than some college professors.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  12 ปีที่แล้ว

    Everything is obvious after you know the answer. You just keep on learning and more things begin to make sense.

  • @ramynovaes9739
    @ramynovaes9739 4 ปีที่แล้ว

    i'm brazilian, and not speach english very well...but you teach so well that even me can understand.( sorry, my english is to bad kkkk)

  • @donotfret
    @donotfret 14 ปีที่แล้ว

    @AllAmericanFiveRadio great, I'll check out the class a oscillators. TY

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  13 ปีที่แล้ว

    @marsenification
    Yes but usually a common ground is needed between power supplies.

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  13 ปีที่แล้ว

    @wow1022
    Flea markets and Ham Fests are a good place to look for a used one. Good Luck!

  • @AllAmericanFiveRadio
    @AllAmericanFiveRadio  14 ปีที่แล้ว

    The NPN transistor is from a Radio Shack Pack of general purpose transistors.