Lecture 2B: Introduction to Manifolds (Discrete Differential Geometry)

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 ม.ค. 2025

ความคิดเห็น • 38

  • @scottpet100
    @scottpet100 3 ปีที่แล้ว +12

    What a terrific service you have done by offering these classes on TH-cam! You are a terrific teacher that explains the concepts very thoroughly in plain english without assuming we know the math jargon. I've always wanted to understand these concepts better, and this class bridges a lot of that gap in my knowledge. Thank you!

  • @ObsessiveClarity
    @ObsessiveClarity 3 ปีที่แล้ว +8

    22:09 I think this just shows how great these lectures are. You present the ideas so naturally that it all feels obvious, but I know other lecturers would fall short, and I would feel so lost reading a technical definition like that.

  • @shiv093
    @shiv093 3 ปีที่แล้ว +28

    0:36 Manifold - First Glimpse
    5:05 Simplicial Manifold - Visualized
    6:50 Simplicial Manifold - Definition
    11:49 Manifold Triangle Mesh
    14:02 Manifold Meshes - Motivation
    16:21 Topological Data Structures
    16:41 Adjacency List
    19:21 Incidence Matrix
    25:03 Aside: Sparse Matrix Data Structures
    28:44 Data Structures - Signed Incidence Matrix
    31:18 Half Edge Mesh
    33:41 Half Edge - Algebraic Definition
    39:31 Half Edge - Smallest Example
    42:20 Other Data Structures - Quad Edge
    43:08 Dual Complex
    44:00 Primal vs. Dual
    45:20 Poincare Duality
    46:16 Poincare Duality in Nature

  • @alfredoarroyog.5705
    @alfredoarroyog.5705 3 ปีที่แล้ว +5

    "If the Tilapia can do it, then so can you. " - Keenan Crane. Words to live by! Thanks for these lectures!

    • @utof
      @utof 2 ปีที่แล้ว

      47:16
      Yeah 😂

  • @erinzhang8664
    @erinzhang8664 3 ปีที่แล้ว +11

    simplicial manifold 6:50
    manifold triangle mesh 11:49
    manifold mesh motivation 15:25
    adjacency list 16:40
    incidence matrix 19:21
    sparse matrix data structure 25:03
    signed incidence matrix 28:45
    half edge mesh 31:18

  • @jiongwang7645
    @jiongwang7645 4 หลายเดือนก่อน

    Terrific! Even more terrific is that it is free and beneficial for so many people like me.

  • @saturdaysequalsyouth
    @saturdaysequalsyouth 3 ปีที่แล้ว +1

    Wow, this is the first time I feel like I'm starting to understand this stuff. This is amazing. Thank you.

  • @sakarapu
    @sakarapu 5 หลายเดือนก่อน

    Great lecture! Thank you! absolute blessing to have found your course.

  • @xanthirudha
    @xanthirudha 3 ปีที่แล้ว +6

    This is a very nice geometry course, can't believe it's 2021 lecture, it seems this can be great for programmers as well

  • @bryanbischof4351
    @bryanbischof4351 4 ปีที่แล้ว +3

    I really liked the slide on “how hard is it to check for manifold by value of k”.

  • @zeyonaut
    @zeyonaut 2 ปีที่แล้ว +2

    I followed along with the C++ exercises for this lecture, and there appears to be a bug (I think it’s a memory leak caused by accessing coefficients from an Eigen::DenseCoeffsBase) that can cause an implementation of the boundary operator to silently crash when running the test suite. If anyone else has this issue, just destroy and rebuild the guilty dense vector as often as necessary. I ended up rebuilding it on every coefficient access to avoid crashing, which didn’t seem to affect performance significantly.

  • @sp4ghet
    @sp4ghet 3 ปีที่แล้ว +4

    Hi, been following these lectures and they're super helpful!
    I noticed your algebraic definition of a vertex in a half-edge seems to disagree with the course notes and your previous description of the vertex struct with pseudo code. Is it perhaps meant to be $
    ho \circ \eta$ so the halfedges are coming outwards from a vertex?

    • @keenancrane
      @keenancrane  3 ปีที่แล้ว +2

      Ah, you're right! Yes, just a typo (or, as you say, a different convention for whether vertices are at the "head" vs. "tail" of the halfedge).

  • @joshuaclavel9666
    @joshuaclavel9666 3 ปีที่แล้ว +3

    I love this my goodness something that my mind needs to know

  • @columbus8myhw
    @columbus8myhw 4 ปีที่แล้ว +15

    Oh hello! I have a twin. And that twin,
    I S M E

  • @maxwang2537
    @maxwang2537 6 หลายเดือนก่อน

    7:25 Can someone please tell me where was “link” introduced? Thanks.

    • @김반석-t2p
      @김반석-t2p หลายเดือนก่อน

      It was in Lecture 2A

  • @felipekersting7065
    @felipekersting7065 3 ปีที่แล้ว +1

    Hi professor Crane, amazing lectures. I have a question: Given that you defined manifold considering only the topology of the mesh, you didn't account for self-intersections (i.e. two faces intersecting each other but without an edge in the "middle"). I have seen manifold definitions that had the additional restriction of not having such intersections. This makes sense to me, but at the same time it would include geometry information. What is your take on this?

  • @SphereofTime
    @SphereofTime 9 หลายเดือนก่อน +1

    14:11

  • @abenedict85
    @abenedict85 2 ปีที่แล้ว

    Do you expand on the signed incidence matrix's connection with discrete exterior calculus in another video in any more detail?

  • @frittenpeter
    @frittenpeter 11 หลายเดือนก่อน

    highly underrated channel

  • @daniellesman6836
    @daniellesman6836 2 ปีที่แล้ว

    Quick question. If the adjacency list is the top dimensional simplex, why wouldn't the adjacency list for the tetrahedron be (0,1,2,3) given that the tetrahedron itself is a 3-simplex?

    • @keenancrane
      @keenancrane  2 ปีที่แล้ว +1

      In this example the mesh we want to describe is a "hollow tetrahedron," i.e., the four triangles that bound a tetrahedron, but no actual tetrahedron.

  • @paul_tee
    @paul_tee 3 ปีที่แล้ว +2

    Professor Crane, I have a question on the definition of the incidence matrix. If we think of the free vector space generated by the n-cells, then your incidence matrices correspond to the linear transformation induced by inclusion of an n-cell into an (n+1) -cell. However, there's an equally natural map from n-cells to (n-1) -cells induced from the boundary operator. The corresponding matrices are exactly the transpose of your incidence matrices. Is there any reason to take one over the other?

    • @keenancrane
      @keenancrane  3 ปีที่แล้ว +1

      Yes, the transpose is important. We will see later on that in discrete exterior calculus these matrices (the boundary and coboundary operators) correspond to a discrete notion of exterior derivative (for the dual and primal mesh, respectively).

  • @KaliFissure
    @KaliFissure ปีที่แล้ว

    Surface(cos(u/2)cos(v/2),cos(u/2)sin (v/2),sin(u)/2) 0>u>4π 0>v>2π.
    A single sided closed surface.
    The missing Klein.
    "Shirley's Surface"

  • @ЗакировМарат-в5щ
    @ЗакировМарат-в5щ ปีที่แล้ว

    As a third party person where can I find homework assignments for this course to do it myself?

  • @SphereofTime
    @SphereofTime 9 หลายเดือนก่อน

    6:42

  • @hamedzahmati4530
    @hamedzahmati4530 2 ปีที่แล้ว

    The best language to describe mathematics is mathematics itself.

  • @JAYMOAP
    @JAYMOAP 11 หลายเดือนก่อน

    Well done

  • @utof
    @utof 2 ปีที่แล้ว

    47:16 if tilapia can do it then so can you 😂😂

  • @SphereofTime
    @SphereofTime 9 หลายเดือนก่อน

    42:42